
Architecture and Compiler Support
for Speculative Precomputation

Presented by:

Steve Shih-wei Liao (Intel MRL)

Dean Tullsen (UCSD)

Donald Yeung (UMCP)

A tutorial held in conjunction with the 12th International Conference on
Parallel Architectures and Compilation Techniques

September 27, 2003 2
SpecPreC Tutorial, PACT 2003 Welcome and Introduction

Tutorial Information

• Schedule

• Contact:

• Web:

Donald Yeung
1327 A. V. Williams
College Park, MD 20742
yeung@eng.umd.edu
(301) 405-3649

Welcome and Introduction
Architecture Support
Compiler Support
Break
Compiler Support cont d
Industry Perspective

 8:30 - 8:45
 8:45 - 9:45
 9:45 -10:00
10:00 -10:30
10:30 -11:00
11:00 -12:00

http://www.ece.umd.edu/~yeung/tutorial

September 27, 2003 3
SpecPreC Tutorial, PACT 2003 Welcome and Introduction

Performance Degrading Events

• Long-latency events degrade performance

• Architectural level

– Memory access

 e.g. instructions and data

– Instruction execution

 e.g. branches

• Application or OS level

– I/O operations

 e.g. file system

September 27, 2003 4
SpecPreC Tutorial, PACT 2003 Welcome and Introduction

Existing Techniques
• Latency reduction (caches)

• Latency tolerance (prefetching)

• Speculation (branch prediction)

for (i = 0; i < N; i++) {
 y[i] = A*x[i] + y[i];
}

Striding Memory References

Highly Biased or
Correlated Branches

DAXPY

Effective for programs that exhibit locality, regularity,
and/or predictability:

September 27, 2003 5
SpecPreC Tutorial, PACT 2003 Welcome and Introduction

Many Programs Exhibit Complex Behavior

for (; arc < stop_arcs; arc += nr_group) {
 if (arc->ident > BASIC) {
 red_cost = arc->cost – arc->tail->potential + arc->head->potential;
 if ((red_cost < 0 && arc->ident == AT_LOWER) ||
 (red_cost > 0 && arc->ident == AT_UPPER)) {
 perm[++basket_size]->a = arc;
 perm[basket_size]->cost = red_cost;
 }
 }
}

Memory Indirection

Data-Dependent
Branches

• Conventional techniques are less effective for:
– Pointer chasing memory references
– Uncorrelated data-dependent branches
– Complex control and data flow

MCF (SPECint2000)

September 27, 2003 6
SpecPreC Tutorial, PACT 2003 Welcome and Introduction

Speculative Precomputation

Cache miss

Load

Branch

Branch
Outcome and

Main
Thread

Precomputation
Threads

target

• Perform redundant execution in
precomputation threads to trigger
long-latency events on behalf of the
main thread

• Key: precomputation threads must
get ahead of the main thread

September 27, 2003 7
SpecPreC Tutorial, PACT 2003 Welcome and Introduction

Precomputation Slices (p-slices)

• Backward slice from each long-
latency instruction

• Stop when slice advantage is
sufficient

• Stopping point is the trigger for the
slice

ldq r1, 0(r1)

br I1

beq r1, I12

ldq r2, 8(r1)

beq r2, I10

ldt f0,16(r1)

ldt f1, 16(r2)

ldt f2, 24(r1)

mult f1, f2, f3

subt f0, f3, f0

stt f0, 16(r1)

ldq r1, 0(r1)

br I1

beq r1, I12

ldq r2, 8(r1)

beq r2, I10

ldt f0, 16(r1)

ldt f1, 16(r2)

I10:

I11:

I1:

I2:

I3:

I4:

I5:

I6:

I7:

I8:

I9:

I10:

I11:

I1:

I2:

I3:

I4:

I5:

for (node = list; node; node = node->next)
 if (node->neighbor != NULL)
 node->value -=
 node->neighbor->value * node->coeff

September 27, 2003 8
SpecPreC Tutorial, PACT 2003 Welcome and Introduction

Compared to Existing Techniques

• Precomputation threads are:
– highly accurate
– purely speculative
– independent of main thread

• Exploits multithreading for single-thread performance

