
Microprocessor Research LabsMicroprocessor Research Labs

Speculative Precomputation
on Intel Architectures*

Steve Liao, Dongkeun Kim, Perry Wang, Xinmin Tian, Hong Wang,
Gerolf Hoflehner, Dan Lavery, Milind Girkar, John Shen

shih-wei.liao@intel.com
September 27, 2003

PACT Tutorial on Architecture & Compiler Support for Speculative Precomputation

* Disclaimer: This research work done in MRL does not represent any future products.

Microprocessor Research LabsMicroprocessor Research Labs2

Outline
?Scope: Target data prefetching on Intel® architectures
?No branch precomputation etc.

?Part I. Binary-level tool on research Itanium® processors
?Chaining Speculative Precomputation (SP):

?Helps in-order Itanium processors

?Experiments on Simultaneous Multithreading (SMT) Itanium
processors

?Part II. Source-level tool on IA-32
?Helper threads on Processors with Hyper-Threading Technology

(HT Technology)

?Constructing helper threads

?Experiments on Pentium® 4 processors with HT Technology

Microprocessor Research LabsMicroprocessor Research Labs3

Scope: Data Prefetching Threads
?Improve data latency of single-threaded codes

using multithreading:

?Use additional thread to prefetch for the main thread

?Use program itself as predictor, instead of address
pattern predictor

Microprocessor Research LabsMicroprocessor Research Labs4

Part I. Binary-Level tool on Itanium
?Software-based approach: (Cf. Dynamic SP)
?Modest hardware support = SMT with few changes
?Extend Itanium processors to SMT

– 4 thread contexts
– 8 cycles to activate a thread

?Use off-line profiling to identify prefetching opportunities

?No special hardware for register copying from main to helper

– Rely on software to find live-ins & generate copying code

?Key: Tool to construct effective helpers
?Efficient helper: essential for performance

Microprocessor Research LabsMicroprocessor Research Labs5

Binary-Level Tool

Source code Profiles

Current Intel compiler

Post-pass control flow graph and IR

Delinquent load identification

Slicing, scheduling, trigger point identification

Helper-threaded binary generation

Adapted binary with triggers+slices

Post-pass
tool

Microprocessor Research LabsMicroprocessor Research Labs6

Basic SP: 1 helper thread does it all

do {
A: t = arc;
B: u = load(t->tail);
C: prefetch(u->potential);
D: arc = t + nr_group;
E: } while (arc < K);

slice p-slice code for 1 helper thread
scheduling

branch if
arc < K

prefetch
(u->potential)

u = load
(t->tail)

t = arc

arc = t +
nr_group

A:

B:

C:

D:

E:

dep. edge

Microprocessor Research LabsMicroprocessor Research Labs7

Chaining SP: Addressing In-Order
Itanium
?Construct a doacross prefetching loop: Key in finding a

p-slice that yields enough prefetch distance

+: long-range prefetching

+: helper threads progressing without hurting main
thread

Trigger

Spawn

Speculative loop:
1st iterationMain

thread

Speculative loop:
2nd iteration

Microprocessor Research LabsMicroprocessor Research Labs8

Chaining SP ? Itanium Can Keep
Prefetching (Cf. Basic SP)

spawn
spawn

spawn

(a) Original

(b) Chaining

(c) Basic

Microprocessor Research LabsMicroprocessor Research Labs9

Chaining SP: Construct doacross loop

load

prefetch

load

critical
sub-slice

non-critical
sub-slice

B:

C:

?Delay-Minimization for Chaining SP is an NP-complete problem

? 2-phase algorithm:
?Dependence-Graph partitioning using strongly connected components

(SCC)

?SCC-partitioning tightens cycles on the dependence graph!

?Scheduling an acyclic graph

E

A

D spawn spawn… E

A

D

? : dependence edge
prefetch

Microprocessor Research LabsMicroprocessor Research Labs10

Critical Slice in Doacross Loop

?For in-order processors such as current Itanium, if the
load (“B:” above) misses, the machine stalls at “C:”

?Scheduling should push computation into non-critical
sub-slices as much as possible. Achieved by:

?Delay minimization via SCC-partitioning

?Dependence reductions

L1:
A: t = arc;
D: arc = t + nr_group;
E: if (arc < K) spawn(L1);
B: u = load(t->tail);
C: prefetch(u->potential);

critical
sub-slice

non-critical
sub-slice

Microprocessor Research LabsMicroprocessor Research Labs11

In-order & Out-of-order (OOO)
Research Itanium Processor

PCL1 I-Cache ITLB PCPCPC
bundle 1 bundle 2

Register Stack Engine

Per-thread
expansion queues

128 integer reg.128 FP reg. br & pred reg.

Branch
Units

Branch
Units

Branch
Units

Integer
and

MM Units

L1
D-Cache

DTLB

Floating
Point
Units

L2
Cache

L3 Cache

? Modest hardware support: SMT with slight changes

? Thread-spawning: use existing light-weight mis-speculation recovery
mechinism at user-level. (chk)

? Live-in copy: use on-chip memory buffer for Register Stack Engine.

Microprocessor Research LabsMicroprocessor Research Labs12

Modeled Itanium Details

For research, use higher memory latencies than current Itanium2 processors

230-cycle latency. TLB miss penalty: 30-cycleMemory

L1: 16KB I- & 16KB D-cache. 4-way. 2-cycle latency
L2: 256KB. 4-way. 14-cycle latency
L3: 3MB. 12-way. 30-cycle latency

cache

128 integer, 128 FP, 64 predicates, 128 control, 8 branchregisters/thread

In-order: 16-bundle expansion queue/thread.
OOO: 255-entry reorder buffer/thread. 18-entry reservation
station

window

2 bundles from 1 thread or 1 bundle each from 2 threadsfetch,issue/cycle

In-order: 12-stage. OOO: 16-stagepipelining

SMT processor with 4 threadsthreading

Microprocessor Research LabsMicroprocessor Research Labs13

Slice Characteristics for 7
Pointer-Intensive Programs

4.0

4.4

4.5

3.0

4.8

3.5

2.8

average # live-in

chaining13.56vpr

chaining14.05mcf

chaining12.52treeadd.bf

basic11.33treeadd.df

chaining28.34mst

chaining9.02health

chaining10.38em3d

rely onaverage sizeslices (#)benchmark

? Several static slices cover delinquent loads.

?Slices are not big. #live-ins are not many.

?Chaining SP is profitable when:
- non-critical sub-slice is large, or
- trip count is large, or
- thread spawning overhead is small Source: Source: LiaoLiao, PLDI’02, PLDI’02

Microprocessor Research LabsMicroprocessor Research Labs14

Speedup on in-order & OOO models

• SSP: Our Software-based SP
• Baseline: In-order processor without SSP
• On in-order: SSP improves 87%.
• On OOO: SSP improves 5%

1
1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

5

em3d health mst treeadd.df treeadd.bf mcf vpr Average

in-order+SSP OOO OOO+SSP

Source: Source: LiaoLiao, PLDI’02, PLDI’02

Microprocessor Research LabsMicroprocessor Research Labs15

Cache Latency Reduction Analysis

0%

20%

40%

60%

80%

100%

io ooo io ooo io ooo io ooo io ooo io ooo io ooo

em3d health mst treeadd.df treeadd.bf mcf vpr

Other
Exec
CacheExec
L1
L2
L3

? Long-range prefetching ? SSP reduces L3 misses

? On OOO, SSP reduces L3 misses for all 7 programs. but only 3
programs achieve speedups using SSP

? Reason: SSP increases L1 misses.

? Need to apply SSP judiciously on OOO
(OOO already covers L1 misses)

Source: Source: LiaoLiao, PLDI’02, PLDI’02

Microprocessor Research LabsMicroprocessor Research Labs16

Summary of Part I

?Minimal hardware changes: Use Software Tool instead

?For 7 pointer-intensive programs, several static slices
cover many delinquent loads.

?Even with conservative HW, SSP achieves 87% speedup
on in-order processor. But 5% speedup on OOO.

?SSP & OOO need to be complementary to deliver performance:
SSP targets long-range L3 misses without polluting L1.

?Motivated by this work, we applied SP to Pentium 4
Processors with HT Technology
? Part II of this talk

Microprocessor Research LabsMicroprocessor Research Labs17

Source-level Tool (“AutoHelper”)
on IA-32
?Motivation for AutoHelper study on IA-32

?Arrival of Pentium 4 Processors with HT Technology
? Evaluate simulator-based ideas

?If manually constructing helper thread’s code:

?Error-prone

?Not providing systematic study or insight on HT Technology

Microprocessor Research LabsMicroprocessor Research Labs18

Part II Outline
?Helper thread on processor with HT Technology

?Exploit the extra logical processor on a processor
with HT Technology

?Hide latency for single-threaded codes via memory-
level parallelism

?AutoHelper: a tool designed to exploit the above

?Case Studies

?Summary

Microprocessor Research LabsMicroprocessor Research Labs19

Intel Hyper-Threading Technology
Architecture
?SMT: Executes two

tasks simultaneously

?Two different applications

?Two threads of same
application

?CPU maintains
architecture state
for two processors

?Two logical processors
per physical processor

Processor Execution Processor Execution
ResourcesResources

Arch StateArch State

R
en

am
e/

A
llo

c
R

en
am

e/
A

llo
c

uo
p

Q
ue

ue
s

uo
p

Q
ue

ue
s

T
ra

ce
 C

ac
h

e
T

ra
ce

 C
ac

h
e

uCodeuCode
ROMROM

33 33

D
ec

o
d

er
D

ec
o

d
er

B
TB

 &
 I

B
TB

 &
 I--

T
L

B
T

L
B

BTBBTB

R
eo

rd
er

/R
et

ir
e

R
eo

rd
er

/R
et

ir
e

F
P

 R
F

F
P

 R
F

FmulFmul, , FAddFAdd
MMX, SSEMMX, SSE

FP loadFP load
FP storeFP store

StoreStore
AGUAGU
LoadLoad
AGUAGU

S
ch

ed
u

le
rs

S
ch

ed
u

le
rs

In
te

g
er

 R
F

In
te

g
er

 R
F

ALUALU

ALUALU

ALUALU

ALUALU

L2L2
CacheCache

L3 L3
Cache Cache

L1 DL1 D--CacheCache
and Dand D--TLBTLB

L2/L3 Cache ControlL2/L3 Cache Control

Arch StateArch State

Processor Execution Processor Execution
ResourcesResources

R
en

am
e/

A
llo

c
R

en
am

e/
A

llo
c

uo
p

Q
ue

ue
s

uo
p

Q
ue

ue
s

T
ra

ce
 C

ac
h

e
T

ra
ce

 C
ac

h
e

uCodeuCode
ROMROM

33 33

D
ec

o
d

er
D

ec
o

d
er

B
TB

 &
 I

B
TB

 &
 I--

T
L

B
T

L
B

BTBBTB

R
eo

rd
er

/R
et

ir
e

R
eo

rd
er

/R
et

ir
e

F
P

 R
F

F
P

 R
F

FmulFmul, , FAddFAdd
MMX, SSEMMX, SSE

FP loadFP load
FP storeFP store

StoreStore
AGUAGU

LoadLoad
AGUAGU

S
ch

ed
u

le
rs

S
ch

ed
u

le
rs

In
te

g
er

 R
F

In
te

g
er

 R
F

ALUALU

ALUALU

ALUALU

ALUALU

CacheCacheCache Cache
L1 DL1 D--CacheCache
and Dand D--TLBTLB

L2/L3 Cache ControlL2/L3 Cache Control

Arch StateArch State Arch StateArch State

Source: Intel Technology Journal’02Source: Intel Technology Journal’02

Microprocessor Research LabsMicroprocessor Research Labs20

Hardware Management in
Processors with HT Technology

?Cache is shared & some other resources are
partitioned ? our approach is to run two cooperative
threads (Main+Helper) of same application

Uop Queue, Memory Instruction Queue, Re-Order Buffer,
General Instruction Queue, Load/Store buffers

Partitioned

Per-CPU architecture state (Instruction Pointers),
renaming logic, some smaller resources (ITLB, Streaming
Buffers, Return Stack Buffer, Branch History Buffer)

Replicated

L1 D-Cache, L2 Cache, Trace Cache, Execution Units,
Microcode ROM, Instruction Fetch Logic, IA-32 Instruction
Decode, Global History Array, Allocator, DTLB Instruction
Scheduler, Uop Retirement Logic

Shared

Source: Intel Technology Journal’02Source: Intel Technology Journal’02

Microprocessor Research LabsMicroprocessor Research Labs21

Software Architecture of Intel
Compiler

C++ Front End FORTRAN90 Front End

Profiler

Interprocedural Analysis & Optimizations

AutoHelper

Global Scalar Optimizations

IA-32 Back End Itanium Back End

Microprocessor Research LabsMicroprocessor Research Labs22

AutoHelper Tool

AutoHelper:
End-to-end

fully
automated

VTuneTM analyzer-based
Delinquent Load Identification

Analysis: Loop Selection,
Slicing, Triggering

Code Generation for
Helper Threads

Microprocessor Research LabsMicroprocessor Research Labs23

Pass 1: VTune analyzer-based
Delinquent Load Identification

1. Run Intel VTune analyzer on a binary to collect
cache-miss & clock-tick profiles.

? Just need standard line# info in the binary.

? Application can be an optimized binary

? No special instrumentation pass needed.

2. Compiler reads in VTune analyzer tb5 samples
& correlate them back to Intel Compiler’s IR

? Correlate using line#

3. Top loads with many clock ticks = Delinquent

Microprocessor Research LabsMicroprocessor Research Labs24

Pass 2: Analysis for A Given Load
1. Select a loop for precomputation
? On real machines, cost of thread activation/deactivation > 1k

cycles
? Should go for outer loop

? On HT, some resources are shared/partitioned
? Find loop with min resource requirement & min #live-in
? Should go for inner loop with few live-ins & deactivate
helper thread at end of loop to relinquish resource

? Our algorithm: bottom-up traversal of loop graph

? Greedy algorithm: Traversal ends when current loop is reasonably
large & its outer loop doesn’t improve on the issues above

2. Use Basic SP for slicing within selected loop
? Slicing is precise enough: Use memory disambiguation module

in Intel compiler [Lavery & Ghiya. PLDI’01]

Microprocessor Research LabsMicroprocessor Research Labs25

Pass 3: Codegen for Helper
Threads
? Since a processor with HT Technology has 2 logical

processors:

? Create 1 helper thread in the beginning of execution

? Activate/deactivate helper when entering/exiting a target loop

? Build Thread Graph to map slice to multiple-entry
threading [Tian et al. ITJ’02]

? No conventional outlining

? Live-ins: Generate code for capture-private

ST
activate deactivate

Hyper-Threading ST HT
target loop

activate deactivate

target loop

Microprocessor Research LabsMicroprocessor Research Labs26

Experimental Environment

Windows® XP Professional, Service Pack 1OS

128 entriesROB

24 entriesStore buffers
48 entriesLoad buffers
64 entries, fully associative, map a 4KB-pageDTLB

512KB, 8-way set associative, 64-byte line,
7-cycle access

L2 Unified
Cache

16KB, 4-way set associative, 64-byte line,
2-cycle Int access, 4-cycle FP access,
write through

L1 Data Cache

12K micro-ops, 8-way set associative
6 micro-ops per line

L1 Trace Cache
2.66 GHz Intel Pentium 4 ProcessorCPU

Microprocessor Research LabsMicroprocessor Research Labs27

Case Study: MST

Microprocessor Research LabsMicroprocessor Research Labs28

Case Study: MST Application in
Olden Benchmark Suite
?As shown, helper thread executes 10% of

instructions but covers ~60% cache misses.
? 7.9% speedup

?Thread activation/deactivation mechanism:
prototype hardware-based

?Key to have this light-weight mechanism

?If using heavier-weight Windows API (SetEvent &
WaitForSingleObject), only 5.7% speedup

Source: Microprocessor Research LabsSource: Microprocessor Research Labs

Microprocessor Research LabsMicroprocessor Research Labs29

Case Study: MCF Application in
SPEC CINT2000 Suite
?Helper thread covers ~50% of cache misses

? 8.5% speedup

?Thread activation/deactivation mechanism:
prototype hardware-based

?Synchronize with main thread every fixed number of
iterations: Prototype hardware-based mechanism

?Key to have this light-weight mechanism

?If use heavier-weight synchronization, only 2.7% speedup

Source: Microprocessor Research LabsSource: Microprocessor Research Labs

Microprocessor Research LabsMicroprocessor Research Labs30

Summary of Part II
?Can systematically generate helper threads to

cover cache misses & get speedups on HT

?Possible future directions:

?Should have lighter-weight thread activation/
deactivation ? Better speedups
?Deactivation relinquishes resources to main thread on Hyper-

Threading processors

?Can deactivate helpers aggressively & dynamically, because
helper threads do not modify architectural states

?Improve compiler to construct optimized helpers that
consume less computation resource on HT
?Trade-off computation & communication, loop unrolling etc.

