
Microprocessor Research LabsMicroprocessor Research Labs

Speculative Precomputation 
on Intel Architectures*

Steve Liao, Dongkeun Kim, Perry Wang, Xinmin Tian, Hong Wang, 
Gerolf Hoflehner, Dan Lavery, Milind Girkar, John Shen

shih-wei.liao@intel.com
September 27, 2003

PACT Tutorial on Architecture & Compiler Support for Speculative Precomputation

* Disclaimer: This research work done in MRL does not represent any future products.



Microprocessor Research LabsMicroprocessor Research Labs2

Outline
?Scope: Target data prefetching on Intel® architectures
?No branch precomputation etc.

?Part I. Binary-level tool on research Itanium® processors
?Chaining Speculative Precomputation (SP):

?Helps in-order Itanium processors 

?Experiments on Simultaneous Multithreading (SMT) Itanium 
processors

?Part II. Source-level tool on IA-32
?Helper threads on Processors with Hyper-Threading Technology 

(HT Technology)

?Constructing helper threads

?Experiments on Pentium® 4 processors with HT Technology
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Scope: Data Prefetching Threads
?Improve data latency of single-threaded codes 

using multithreading:

?Use additional thread to prefetch for the main thread

?Use program itself as predictor, instead of address 
pattern predictor
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Part I. Binary-Level tool on Itanium
?Software-based approach: (Cf. Dynamic SP)
?Modest hardware support = SMT with few changes
?Extend Itanium processors to SMT

– 4 thread contexts
– 8 cycles to activate a thread

?Use off-line profiling to identify prefetching opportunities

?No special hardware for register copying from main to helper

– Rely on software to find live-ins & generate copying code

?Key: Tool to construct effective helpers
?Efficient helper: essential for performance
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Binary-Level Tool

Source code Profiles

Current Intel compiler

Post-pass control flow graph and IR

Delinquent load identification

Slicing, scheduling, trigger point identification

Helper-threaded binary generation

Adapted binary with triggers+slices

Post-pass
tool
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Basic SP: 1 helper thread does it all

do {
A:      t = arc;
B:      u = load(t->tail);
C:      prefetch(u->potential);
D:      arc = t + nr_group;
E:   } while (arc < K);

slice p-slice code for 1 helper thread
scheduling

branch if 
arc < K

prefetch
(u->potential)

u = load
(t->tail)

t = arc

arc = t + 
nr_group

A:

B:

C:

D:

E:

dep. edge
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Chaining SP: Addressing In-Order 
Itanium
?Construct a doacross prefetching loop: Key in finding a 

p-slice that yields enough prefetch distance

+: long-range prefetching

+: helper threads progressing without hurting main 
thread

Trigger

Spawn

Speculative loop:
1st iterationMain

thread

Speculative loop:
2nd iteration
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Chaining SP ? Itanium Can Keep 
Prefetching (Cf. Basic SP)

spawn
spawn

spawn

(a) Original

(b) Chaining

(c) Basic
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Chaining SP: Construct doacross loop

load

prefetch

load

critical
sub-slice

non-critical
sub-slice

B:

C:

?Delay-Minimization for Chaining SP is an NP-complete problem

? 2-phase algorithm:
?Dependence-Graph partitioning using strongly connected components 

(SCC)

?SCC-partitioning tightens cycles on the dependence graph!

?Scheduling an acyclic graph

E

A

D spawn spawn…  E

A

D

? : dependence edge
prefetch
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Critical Slice in Doacross Loop

?For in-order processors such as current Itanium, if the 
load (“B:” above) misses, the machine stalls at “C:”

?Scheduling should push computation into non-critical 
sub-slices as much as possible. Achieved by:

?Delay minimization via SCC-partitioning

?Dependence reductions

L1:
A:  t = arc;
D:  arc = t + nr_group;
E:  if (arc < K) spawn(L1);
B:  u = load(t->tail);
C:  prefetch(u->potential);

critical
sub-slice

non-critical
sub-slice
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In-order & Out-of-order (OOO) 
Research Itanium Processor

PCL1 I-Cache ITLB PCPCPC
bundle 1 bundle 2

Register Stack Engine

Per-thread 
expansion queues

128 integer reg.128 FP reg. br & pred reg.

Branch
Units

Branch
Units

Branch
Units

Integer
and

MM Units

L1
D-Cache

DTLB

Floating
Point
Units

L2
Cache

L3 Cache

? Modest hardware support: SMT with slight changes

? Thread-spawning: use existing light-weight mis-speculation recovery 
mechinism at user-level. (chk)

? Live-in copy: use on-chip memory buffer for Register Stack Engine.
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Modeled Itanium Details

For research, use higher memory latencies than current Itanium2 processors

230-cycle latency. TLB miss penalty: 30-cycleMemory

L1: 16KB I- & 16KB D-cache. 4-way. 2-cycle latency
L2: 256KB. 4-way. 14-cycle latency
L3: 3MB. 12-way. 30-cycle latency

cache

128 integer, 128 FP, 64 predicates, 128 control, 8 branchregisters/thread

In-order: 16-bundle expansion queue/thread. 
OOO: 255-entry reorder buffer/thread. 18-entry reservation 
station

window

2 bundles from 1 thread or 1 bundle each from 2 threadsfetch,issue/cycle

In-order: 12-stage. OOO: 16-stagepipelining

SMT processor with 4 threadsthreading
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Slice Characteristics for 7 
Pointer-Intensive Programs

4.0

4.4

4.5

3.0

4.8

3.5

2.8

average # live-in

chaining13.56vpr

chaining14.05mcf

chaining12.52treeadd.bf

basic11.33treeadd.df

chaining28.34mst

chaining9.02health

chaining10.38em3d

rely onaverage sizeslices (#)benchmark

? Several static slices cover delinquent loads.

?Slices are not big. #live-ins are not many.

?Chaining SP is profitable when:
- non-critical sub-slice is large, or
- trip count is large, or
- thread spawning overhead is small Source: Source: LiaoLiao, PLDI’02, PLDI’02
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Speedup on in-order & OOO models

• SSP: Our Software-based SP
• Baseline: In-order processor without SSP
• On in-order: SSP improves 87%.
• On OOO: SSP improves 5%

1
1.4
1.8
2.2
2.6

3
3.4
3.8
4.2
4.6

5

em3d health mst treeadd.df treeadd.bf mcf vpr Average

in-order+SSP OOO OOO+SSP

Source: Source: LiaoLiao, PLDI’02, PLDI’02
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Cache Latency Reduction Analysis

0%

20%

40%

60%

80%

100%

io ooo io ooo io ooo io ooo io ooo io ooo io ooo

em3d health mst treeadd.df treeadd.bf mcf vpr

Other
Exec
CacheExec
L1
L2
L3

? Long-range prefetching ? SSP reduces L3 misses

? On OOO, SSP reduces L3 misses for all 7 programs. but only 3 
programs achieve speedups using SSP

? Reason: SSP increases L1 misses.

? Need to apply SSP judiciously on OOO 
(OOO already covers L1 misses)

Source: Source: LiaoLiao, PLDI’02, PLDI’02
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Summary of Part I

?Minimal hardware changes: Use Software Tool instead

?For 7 pointer-intensive programs, several static slices 
cover many delinquent loads.

?Even with conservative HW, SSP achieves 87% speedup 
on in-order processor. But 5% speedup on OOO.

?SSP & OOO need to be complementary to deliver performance: 
SSP targets long-range L3 misses without polluting L1.

?Motivated by this work, we applied SP to Pentium 4 
Processors with HT Technology
? Part II of this talk
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Source-level Tool (“AutoHelper”) 
on IA-32
?Motivation for AutoHelper study on IA-32 

?Arrival of Pentium 4 Processors with HT Technology 
? Evaluate simulator-based ideas

?If manually constructing helper thread’s code:

?Error-prone

?Not providing systematic study or insight on HT Technology
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Part II Outline
?Helper thread on processor with HT Technology

?Exploit the extra logical processor on a processor 
with HT Technology

?Hide latency for single-threaded codes via memory-
level parallelism

?AutoHelper: a tool designed to exploit the above

?Case Studies

?Summary
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Intel Hyper-Threading Technology 
Architecture
?SMT: Executes two 

tasks simultaneously 

?Two different applications

?Two threads of same 
application

?CPU maintains 
architecture state 
for two processors

?Two logical processors 
per physical processor

Processor Execution Processor Execution 
ResourcesResources

Arch StateArch State
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Source: Intel Technology Journal’02Source: Intel Technology Journal’02
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Hardware Management in 
Processors with HT Technology

?Cache is shared & some other resources are 
partitioned ? our approach is to run two cooperative 
threads (Main+Helper) of same application

Uop Queue, Memory Instruction Queue, Re-Order Buffer, 
General Instruction Queue, Load/Store buffers

Partitioned

Per-CPU architecture state (Instruction Pointers), 
renaming logic, some smaller resources (ITLB, Streaming 
Buffers, Return Stack Buffer, Branch History Buffer)

Replicated

L1 D-Cache, L2 Cache, Trace Cache, Execution Units, 
Microcode ROM, Instruction Fetch Logic, IA-32 Instruction 
Decode, Global History Array, Allocator, DTLB Instruction 
Scheduler, Uop Retirement Logic

Shared

Source: Intel Technology Journal’02Source: Intel Technology Journal’02
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Software Architecture of Intel 
Compiler

C++ Front End FORTRAN90 Front End

Profiler

Interprocedural Analysis & Optimizations

AutoHelper

Global Scalar Optimizations

IA-32 Back End Itanium Back End
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AutoHelper Tool

AutoHelper:
End-to-end 

fully 
automated

VTuneTM analyzer-based 
Delinquent Load Identification

Analysis: Loop Selection, 
Slicing, Triggering

Code Generation for
Helper Threads
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Pass 1: VTune analyzer-based 
Delinquent Load Identification

1. Run Intel VTune analyzer on a binary to collect 
cache-miss & clock-tick profiles.

? Just need standard line# info in the binary.

? Application can be an optimized binary

? No special instrumentation pass needed.

2. Compiler reads in VTune analyzer tb5 samples 
& correlate them back to Intel Compiler’s IR

? Correlate using line#

3. Top loads with many clock ticks = Delinquent
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Pass 2: Analysis for A Given Load 
1. Select a loop for precomputation
? On real machines, cost of thread activation/deactivation > 1k 

cycles
? Should go for outer loop

? On HT, some resources are shared/partitioned
? Find loop with min resource requirement & min #live-in
? Should go for inner loop with few live-ins & deactivate 
helper thread at end of loop to relinquish resource 

? Our algorithm: bottom-up traversal of loop graph

? Greedy algorithm: Traversal ends when current loop is reasonably
large & its outer loop doesn’t improve on the issues above

2. Use Basic SP for slicing within selected loop
? Slicing is precise enough: Use memory disambiguation module 

in Intel compiler [Lavery & Ghiya. PLDI’01]
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Pass 3: Codegen for Helper 
Threads
? Since a processor with HT Technology has 2 logical 

processors:

? Create 1 helper thread in the beginning of execution

? Activate/deactivate helper when entering/exiting a target loop

? Build Thread Graph to map slice to multiple-entry 
threading [Tian et al. ITJ’02]

? No conventional outlining

? Live-ins: Generate code for capture-private

ST
activate deactivate

Hyper-Threading ST HT
target loop

activate deactivate

target loop
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Experimental Environment

Windows® XP Professional, Service Pack 1OS

128 entriesROB

24 entriesStore buffers
48 entriesLoad buffers
64 entries, fully associative, map a 4KB-pageDTLB

512KB, 8-way set associative, 64-byte line, 
7-cycle access

L2 Unified 
Cache

16KB, 4-way set associative, 64-byte line,
2-cycle Int access, 4-cycle FP access, 
write through

L1 Data Cache

12K micro-ops, 8-way set associative
6 micro-ops per line

L1 Trace Cache
2.66 GHz Intel Pentium 4 ProcessorCPU
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Case Study: MST
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Case Study: MST Application in 
Olden Benchmark Suite
?As shown, helper thread executes 10% of 

instructions but covers ~60% cache misses. 
? 7.9% speedup

?Thread activation/deactivation mechanism: 
prototype hardware-based

?Key to have this light-weight mechanism

?If using heavier-weight Windows API (SetEvent & 
WaitForSingleObject), only 5.7% speedup

Source: Microprocessor Research LabsSource: Microprocessor Research Labs
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Case Study: MCF Application in 
SPEC CINT2000 Suite 
?Helper thread covers ~50% of cache misses

? 8.5% speedup

?Thread activation/deactivation mechanism: 
prototype hardware-based

?Synchronize with main thread every fixed number of 
iterations: Prototype hardware-based mechanism

?Key to have this light-weight mechanism

?If use heavier-weight synchronization, only 2.7% speedup

Source: Microprocessor Research LabsSource: Microprocessor Research Labs
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Summary of Part II
?Can systematically generate helper threads to 

cover cache misses & get speedups on HT 

?Possible future directions:

?Should have lighter-weight thread activation/ 
deactivation ? Better speedups
?Deactivation relinquishes resources to main thread on Hyper-

Threading processors

?Can deactivate helpers aggressively & dynamically, because 
helper threads do not modify architectural states

?Improve compiler to construct optimized helpers that 
consume less computation resource on HT
?Trade-off computation & communication, loop unrolling etc.


