Speculative Precomputation
on Intel Architectures”

Steve Liao, Dongkeun Kim, Perry Wang, Xinmin Tian, Hong Wang,
Gerolf Hoflenner, Dan Lavery, Milind Girkar, John Shen

shih-wei.liao@intel.com
September 27, 2003

PACT Tutorial on Architecture & Compiler Support for Speculative Precomputation

* Disclaimer: This research work done in MRL does not represent any future products.

_ Microprocessor Research Labs

Outline

e Scope: Target data prefetching on Intel® architectures
2No branch precomputation etc.
&Part |. Binary-level tool on research Itanium® processors

&Chaining Speculative Precomputation (SP):
& Helps in-order Itanium processors

eExperiments on Simultaneous Multithreading (SMT) Itanium
processors

ez Part Il. Source-level tool on I1A-32

#Helper threads on Processors with Hyper-Threading Technology
(HT Technology)

&Constructing helper threads
e Experiments on Pentium® 4 processors with HT Technology

_ 2 Microprocessor Research Labs

Scope: Data Prefetching Threads

slmprove data latency of single-threaded codes
using multithreading:

ese additional thread to prefetch for the main thread

edJse program itself as predictor, instead of address
pattern predictor

_ 3 Microprocessor Research Labs

Part |I. Binary-Level tool on Itanium

&Software-based approach: (Cf. Dynamic SP)
eModest hardware support = SMT with few changes

e Extend Itanium processors to SMT

— 4 thread contexts
— 8 cyclesto activate athread
zUse off-line profiling to identify prefetching opportunities

#No special hardware for register copying from main to helper
— Rely on software to find live-ins & generate copying code

&Key: Tool to construct effective helpers

eEfficient helper: essential for performance

_ 4 Microprocessor Research Labs

Binary-Level Tool

Source code Profiles

J J

Current Intel compiler

d

Post-pass control flow graph and IR

A 4

Delinquent load identification

Post-pass 1
tool Slicing, scheduling, trigger point identification
)
Helper-threaded binary generation
\
)

Adapted binary with triggers+slices

_ 5 Microprocessor Research Labs

Basic SP: 1 helper thread does it all

scheduling

slice

p-slice code for 1 helper thread

do {
t = arc;
u = load(t->tail);
prefetch(u->potential);
arc =t +nr_group;

} while (arc < K);

moowx

_ 6 Microprocessor Research Labs

Chaining SP: Addressing In-Order
Itanium

e Construct a doacross prefetching loop: Key in finding a
p-slice that yields enough prefetch distance

+: long-range prefetching
+: helper threads progressing without hurting main

thread
Speculative loop: Speculative loop:
Main 1st iteration 2nd jteration
thread

f’
-
-
f’
—-—

-

Microprocessor Research Labs

Chaining SP ? Itanium Can Keep
Prefetching (Cf. Basic SP)

y..Spawn
> %
X Y
Y
>
X . }
(b) Chaining
(c) Basic
v
(a) Original

_ 8 Microprocessor Research Labs

Chaining SP: Construct doacross loop

& Delay-Minimization for Chaining SP is an NP-complete problem

& 2-phase algorithm:
zs(DSe&%)ndence-Graph partitioning using strongly connected components

& SCC-partitioning tightens cycles on the dependence graph!
& Scheduling an acyclic graph

(E) Sﬂ] e@ spawn...

critical

sub-slice_ (A) (A)
l B:

non-critical?E ’
sub-slice d C.
& . dependence edge

_ 9 Microprocessor Research Labs

Critical Slice in Doacross Loop

1:

. if (arc < K) spawn(L1);
. U = load(t->tail);

L
critical { Al t=arc;
sub-slice {|P: arc =t + nr_group;
E
B
C. prefetch(u->potential);

non-critical {
sub-slice

&For in-order processors such as current Itanium, if the
load (“B:” above) misses, the machine stalls at “C:”

& Scheduling should push computation into non-critical
sub-slices as much as possible. Achieved by:

&Delay minimization via SCC-partitioning

zDependence reductions

_ 10 Microprocessor Research Labs

In-order & Out-of-order (O0O0O)
Research Itanium Processor

'

Per-thread
expansion queues

e

& Modest hardware support: SMT with slight changes

& Thread-spawning: use existing light-weight mis-speculation recovery
mechinism at user-level. (chk)

& Live-in copy: use on-chip memory buffer for Register Stack Engine.

_ 11 Microprocessor Research Labs

Modeled Itanium Detalls

threading

SMT processor with 4 threads

pipelining

In-order: 12-stage. OOQO: 16-stage

fetch,issue/cycle

2 bundles from 1 thread or 1 bundle each from 2 threads

window

In-order: 16-bundle expansion queue/thread.
OO0O0: 255-entry reorder buffer/thread. 18-entry reservation
station

registers/thread

128 integer, 128 FP, 64 predicates, 128 control, 8 branch

cache L1: 16KB |- & 16KB D-cache. 4-way. 2-cycle latency
L2: 256KB. 4-way. 14-cycle latency
L3: 3MB. 12-way. 30-cycle latency

Memory 230-cycle latency. TLB miss penalty: 30-cycle

For research, use higher memory latencies than current Itanium 2 processors

12 Microprocessor Research Labs

Slice Characteristics for 7
Pointer-Intensive Programs

benchmark slices (#) average size average # live-in rely on
em3d 8 10.3 2.8 chaining
health 2 9.0 3.5 chaining
mst 4 28.3 4.8 chaining
treeadd.df 3 11.3 3.0 basic

treeadd.bf 2 12.5 4.5 chaining
mcf 5 14.0 4.4 chaining
vpr 6 13.5 4.0 chaining

& Several static slices cover delinquent loads.
& Slices are not big. #live-ins are not many.

& Chaining SP is profitable when:
- non-critical sub-sliceis large, or
- trip count is large, or
- thread spawning overhead is small

13 Microprocessor Research Labs

Source: Liao, PLDI'02

Speedup on in-order & OO0 models

|Ein-order+SSP W OO0 [0 OOO+SSP |

4.6
4.2
3.8
3.4 A

Ml dd s

em3d health mst treeadd.df treeadd.bf mcf vpr Average

SSP: Our Software-based SP

Baseline: In-order processor without SSP
On in-order: SSP improves 87%.

On O0OO: SSP improves 5%

Source: Liao, PLDI'02

_ 14 Microprocessor Research Labs

Cache Latency Reduction Analysis

100% j— — | - —| i

80%

OOther

m Exec
CacheExec
OL1

oL2
20% 5 | DLs

ooo oo0o ooo

60% 1 u

40% -

0% |

io io io

em3d health treeadd.df | treeadd.bf mcf vpr

& Long-range prefetching & SSP reduces L3 misses

& 0On 00O, SSP reduces L3 misses for all 7 programs. but only 3
programs achieve speedups using SSP

2z Reason: SSP increases L1 misses.

& Need to apply SSP judiciously on OOO
(OO0 already covers L1 misses)
Source: Liao, PLDI'02

_ 15 Microprocessor Research Labs

Summary of Part |

eMinimal hardware changes: Use Software Tool instead

& For 7 pointer-intensive programs, several static slices
cover many delinquent loads.

e Even with conservative HW, SSP achieves 87% speedup
on in-order processor. But 5% speedup on OOO.

<SSP & O0OO need to be complementary to deliver performance:
SSP targets long-range L3 misses without polluting L1.

e Motivated by this work, we applied SP to Pentium 4
Processors with HT Technology

? Part Il of this talk

_ 16 Microprocessor Research Labs

Source-level Tool (“AutoHelper™)
on IA-32

eMotivation for AutoHelper study on |A-32

&Arrival of Pentium 4 Processors with HT Technology
? Evaluate simulator-based ideas

&f manually constructing helper thread’s code:

&Error-prone

&Not providing systematic study or insight on HT Technology

_ 17 Microprocessor Research Labs

Part Il Outline

&sHelper thread on processor with HT Technology

eExploit the extra logical processor on a processor
with HT Technology

eHide latency for single-threaded codes via memory-
level parallelism

eAutoHelper: atool designed to exploit the above
eCase Studies

sSummary

_ 18 Microprocessor Research Labs

Intel Hyper-Threading Technology
Architecture

=SMT: Executes two

tasks simultaneously

&Two different applications

2 Two threads of same
application

|
Il
\s
iy
]

architecture state “|
for two processors =

pec
C
|1I.
=

G
|i||

2CPU maintains

&Two logical processors
per physical processor

Source: Intel Technology Journal’02

_ 19 Microprocessor Research Labs

Hardware Management in
Processors with HT Technology

Shared L1 D-Cache, L2 Cache, Trace Cache, Execution Units,
Microcode ROM, Instruction Fetch Logic, IA-32 Instruction
Decode, Global History Array, Allocator, DTLB Instruction
Scheduler, Uop Retirement Logic

Replicated | Per-CPU architecture state (Instruction Pointers),
renaming logic, some smaller resources (ITLB, Streaming
Buffers, Return Stack Buffer, Branch History Buffer)

Partitioned | Uop Queue, Memory Instruction Queue, Re-Order Buffer,
General Instruction Queue, Load/Store buffers

e Cache iIs shared & some other resources are

partitioned ? our approach is to run two cooperative
threads (Main+Helper) of same application

Source: Intel Technology Journal’02

_ 20 Microprocessor Research Labs

Software Architecture of Intel
Compiler

C++ Front End

FORTRAN90 Front End

\/

Prof

iler

A 4

Interprocedural Analysis & Optimizations

AutoHelper

Global Scalar Optimizations

|A-32 Back End |/

ltanium Back End

21

Microprocessor Research Labs

AutoHelper Tool

/
VTune™ analyzer-based
Delinquent Load Identification
AutoHelper: . \l' .
Eng_tfeag < Analy_sl_s: Loop Selgctlon,
fully Slicing, Triggering
automated l
Code Generation for
Helper Threads
\

_ 22 Microprocessor Research Labs

Pass 1: VTune analyzer-based
Delinguent Load ldentification

1. Run Intel VTune analyzer on a binary to collect
cache-miss & clock-tick profiles.

& Just need standard line# info in the binary.

& Application can be an optimized binary

& No special instrumentation pass needed.

2. Compiler reads in VTune analyzer tb5 samples
& correlate them back to Intel Compiler’s IR

& Correlate using line#

3. Top loads with many clock ticks = Delinquent

_ 23 Microprocessor Research Labs

Pass 2: Analysis for A Given Load

1. Select aloop for precomputation

2z On real machines, cost of thread activation/deactivation > 1k
cycles
? Should go for outer loop

& On HT, some resources are shared/partitioned
? Find loop with min resource requirement & min #live-in
? Should go for inner loop with few live-ins & deactivate
helper thread at end of loop to relinquish resource

& Our algorithm: bottom-up traversal of loop graph

& Greedy algorithm: Traversal ends when current loop is reasonably
large & its outer loop doesn’t improve on the issues above

2. Use Basic SP for slicing within selected loop

& Slicing is precise enough: Use memory disambiguation module
In Intel compiler [Lavery & Ghiya. PLDI'O1]

_ 24 Microprocessor Research Labs

Pass 3: Codegen for Helper
Threads

& Since a processor with HT Technology has 2 logical
processors:

& Create 1 helper thread in the beginning of execution

& Activate/deactivate helper when entering/exiting a target loop

activate] deactivate activate '
T =—— Hyper-Threading = ST —— HT deactivate
target loop target loop

& Build Thread Graph to mag slice to multiple-entry
threading [Tian et al. ITJ'02]

& No conventional outlining
& Live-ins: Generate code for capture-private

_ 25 Microprocessor Research Labs

Experimental Environment

CPU 2.66 GHz Intel Pentium 4 Processor
L1 Trace Cache | 12K micro-ops, 8-way set associative
6 micro-ops per line

L1 Data Cache |16KB, 4-way set associative, 64-byte line,
2-cycle Int access, 4-cycle FP access,
write through

L2 Unified 512KB, 8-way set associative, 64-byte line,
Cache 7-cycle access

DTLB 64 entries, fully associative, map a 4KB-page
Load buffers 48 entries

Store buffers 24 entries

ROB 128 entries

OS Windows® XP Professional, Service Pack 1

_ 26 Microprocessor Research Labs

Case Study: MST

= VY Tune(TM) Performance Analyzer

File Edit “iew Activity Configure ‘Window Help

hiE By = e] | B & B ||| mat(Sampling)
B Sampling Threads - [MO_HELPER - Mon Sep 22 22:55:46 2003]

i | :_Fl Mk [2] = | I2] 2] K| —J Process &1 Thread Module
Thread E s

Selected tems

P threadl

E went Activity 1D | Scale Sample After Walue | Total Samplez | Duration [g]
Instructions Fetired 142 0.00000001 000 71073 15453 4.052
2nd Level Cache Read Mizzses 142 0.000001 00000« 1742

Ring O Ring 2 | Start T~
1198 14261 9/224
15474 4.092 512 14962 9,224

1 ikems, 4 events, 1 ikemis) selecked. 1 Process

B Sampling Threads - [HELPER - Mon Sep 22 22:47:32 2003]

i | ""E Mk [2] = Y K| = Process &1 Thread Module
E Thread Ewvents % |
i
- thread?
P threadi
n]n] 10.00 20.00 S0.o0 S0.00 S0.00 Gi0.00 Fo.oo g0.00 90.00 100
E went Activitp I | Scale Sample After Walue | Total Samples | Duration (2] | Ring 0 | Ring 3 | Start Til -
Ingtructions Retired 136 0.000000071000< 102454 12010 2170 B9S2 11318 922421
2nd Level Cache Read Mizzes 136 0.00000100000= 2227 11932 3170 309 11623 Qrzz/a™
< >
2 ikems, 4 events, 1 itemis) selected. 1 Process

Sarmpling hodules - [HELPER. - hon Sep 22 22:47:32 2., J Sarmpling Processes - [HELPER. - Mon Sep 22 22:47:52 ... J Sampling Threads - [HELPER - Mon Sep 22 22:47:32 2003] r

For Help, press Fi

Case Study: MST Application In
Olden Benchmark Suite

&As shown, helper thread executes 10% of
Instructions but covers ~60% cache misses.
? 7.9% speedup

zThread activation/deactivation mechanism:
prototype hardware-based

zKey to have this light-weight mechanism

&If using heavier-weight Windows API (SetEvent &
WaitForSingleObject), only 5.7% speedup

Source: Microprocessor Research Labs

_ 28 Microprocessor Research Labs

Case Study: MCF Application In
SPEC CINT2000 Suite

&Helper thread covers ~50% of cache misses
? 8.5% speedup

zThread activation/deactivation mechanism:
prototype hardware-based

&Synchronize with main thread every fixed number of
iterations: Prototype hardware-based mechanism

&Key to have this light-weight mechanism

&If use heavier-weight synchronization, only 2.7% speedup

Source: Microprocessor Research Labs

_ 29 Microprocessor Research Labs

Summary of Part Il

&Can systematically generate helper threads to
cover cache misses & get speedups on HT

zPossible future directions:

«Should have lighter-weight thread activation/
deactivation ? Better speedups

&Deactivation relinquishes resources to main thread on Hyper -
Threading processors

& Can deactivate helpers aggressively & dynamically, because
helper threads do not modify architectural states

elmprove compiler to construct optimized helpers that
consume less computation resource on HT

& Trade-off computation & communication, loop unrolling etc.

_ 30 Microprocessor Research Labs

