
Architectural Support for
Speculative
Precomputation

Dean Tullsen
UCSD

on sabbatical at UPC

Speculative Precomputation Tutorial

Background -- Three Types of
Helper Threads

Cache Prefetching
Branch Precomputation
Other

What architectural support you need/want
depends on what your helper thread is doing

Speculative Precomputation Tutorial

Background – Helper Threads
as Non-traditional Parallelism

Traditional Parallelism – We use extra
threads/processors to offload computation. Threads
divide up the execution stream.
Helper threads – Extra threads are used to speed up
computation without necessarily off-loading any of
the original computation

Primary advantage nearly any code, no matter how
inherently serial, can benefit from parallelization.

Speculative Precomputation Tutorial

Traditional Parallelism
Thread 1 Thread 2 Thread 3 Thread 4

Speculative Precomputation Tutorial

Helper Thread Parallelism
Thread 1 Thread 2 Thread 3 Thread 4

Speculative Precomputation Tutorial

Speculative Precomputation

Delinquent load

Trigger instruction

Prefetch

Spawn thread

Memory latency

Speculative Precomputation Tutorial

Other Helper Thread Models

For a description of helper threads that do
not derive their code from the original
thread, see:

Chappell, Stark, Kim, Reinhardt, Patt,
"Simultaneous Subordinate Microthreading
(SSMT),“ ISCA 26

Speculative Precomputation Tutorial

Helper Thread Model

Delinquent load

Trigger Point

Prefetch

Memory latency

Spawn thread
Copy Live-Ins

Speculative Precomputation Tutorial

Cache Prefetching Architectural
Support – Minimum

None. Cache is a shared structure. One
thread can bring in a cache line that is
needed by another as a side effect.

Load A/Prefetch A

Load A

Speculative Precomputation Tutorial

Cache Prefetching Architectural
Support – Useful

fast thread spawns
support for live-in transfer
automatic triggering
directed prefetches
thread management
thread creation!
retention of computation

Del. load

Trigger Point

Prefetch

latency

Copy Live-Ins

Speculative Precomputation Tutorial

Branch Precomputation
Architectural Support – Minimum

Although branch predictor is (possibly)
shared, depending on branch side effects
is ineffective.

BEQ R1, R2, label

BEQ R1, R2, label

Speculative Precomputation Tutorial

Branch Precomputation
Architectural Support – Minimum

ISA support
Outcome storage
Correlator
Ability to override branch predictor

Speculative Precomputation Tutorial

Branch Precomputation
Architectural Support – Useful

fast thread spawns
support for live-in transfer
automatic triggering
thread management
thread creation
retention of computation

Speculative Precomputation Tutorial

Arch Support for other types of
helper threads

Access to hardware structures
branch predictor, BTB
trace cache
TLB
Caches

Triggering
branch predictor, BTB
value profiler
trace cache
TLB
Caches

Speculative Precomputation Tutorial

Outline -- Architectural Support for
Helper Threads

Branch Correlation Support
Dynamic Speculative Precomputation --
Arch Support for Creation and
Management of Helper Threads
Register Integration – Arch Support for
Reuse of Values in Helper Threads

Speculative Precomputation Tutorial

Prediction/Branch Correlation

This material heavily based on:
Zilles, Sohi, “Execution-Based Prediction
Using Speculative Slices” ISCA 28

Speculative Precomputation Tutorial

The Problem

Even assuming the ability to match
instructions in the helper thread with
branch PCs in the main thread,

Even assuming the ability to match
instructions in the helper thread with
branch PCs in the main thread, we still
must correlate dynamic instances of the
helper thread predictions with dynamic
instances of the branch in the main thread.

Speculative Precomputation Tutorial

Overall Solution

Tagged Prediction Queue

PC TagPC TagPC Tag
NT NT NT TTNT NT NT TTT NTNT NT NTTNT NT NT TTT NTPC Tag

Speculative Precomputation Tutorial

Challenges
Re-ordering predictions produced out of order

allocate entries at fetch of prediction
generating instruction
Main Thread (MT) Mis-speculation recovery

consume at fetch of MT branch, free at
commit
Late predictions

MT must still consume empty entries,
possibly establishing correlation with in-flight
prediction
Conditionally-executed branches

Speculative Precomputation Tutorial

Conditionally Executed Branches

Issue – Helper threads
typically contain no
control flow (except
maybe a single loop
back), and thus will
generate a prediction
for every iteration.

A

B

C
F

D

E

Speculative Precomputation Tutorial

Conditionally Executed Branches

Do not want to introduce control flow into the
slice to conditionally consume predictions.
Key – since the helper thread produces a
prediction every iteration, we just consume one
every iteration.
Zilles and Sohi used fetch PC’s to determine
when a prediction should be killed (consumed).
Could also use explicit instructions in main
thread.

Speculative Precomputation Tutorial

Conditionally Executed Branches

A

B

C
F

D

E
Loop Iteration Kill

Slice Kill

NT NT NT TTT NTPC Tag

Speculative Precomputation Tutorial

Outline -- Architectural Support for
Helper Threads

Branch Correlation Support
Dynamic Speculative Precomputation --
Arch Support for Creation and
Management of Helper Threads
Register Integration – Arch Support for
Reuse of Values in Helper Threads

Speculative Precomputation Tutorial

Why Create Threads in Hardware –
Why Dynamic Speculative
Precomputation?

SW Speculative Precomputation provides
significant speedup, but

Requires offline program analysis
Creates threads for fixed number of thread contexts
Does not target existing code
Platform specific code

A completely hardware-based version will use
dynamic program analysis via back-end
instruction analyzers.

Speculative Precomputation Tutorial

Example SMT Processor
Pipeline

PCPCPCPC
ICache

Register
Renaming

Centralized
Instruction

Queue

Re-order Buffer
Re-order Buffer

Re-order Buffer
Re-order Buffer

Monolithic
Register

File

Execution
Units

Data
Cache

Speculative Precomputation Tutorial

Modified Pipeline

PCPCPCPC
ICache

Register
Renaming

Centralized
Instruction

Queue

Re-order Buffer
Re-order Buffer

Re-order Buffer
Re-order Buffer

Monolithic
Register

File

Execution
Units

Data
Cache

Delinquent Load
Identification
Table (DLIT)

Identify delinquent loads

Construct P-slices

Spawn and manage P-slices

√

Speculative Precomputation Tutorial

Delinquent Load Identification
Table

Identify PCs of program’s delinquent loads
Entries allocated to PC of loads which missed in
L2 cache on last execution

First-come, first-serve
Entry tracks average load behavior
After 128k total instructions, evaluated for
delinquency

Summary – finds delinquent loads

Speculative Precomputation Tutorial

PCPCPCPC
ICache

Register
Renaming

Centralized
Instruction

Queue

Re-order Buffer
Re-order Buffer

Re-order Buffer
Re-order Buffer

Monolithic
Register

File

Execution
Units

Data
Cache

Delinquent Load
Identification
Table (DLIT)

Modified Pipeline
Identify delinquent loads

Construct P-slices

Spawn and manage P-slices

√

Speculative Precomputation Tutorial

PCPCPCPC
ICache

Register
Renaming

Centralized
Instruction

Queue

Re-order Buffer
Re-order Buffer

Re-order Buffer
Re-order Buffer

Monolithic
Register

File

Execution
Units

Data
Cache

Delinquent Load
Identification
Table (DLIT)

Retired
Instruction

Buffer (RIB)

Modified Pipeline
Identify delinquent loads

Construct P-slices

Spawn and manage P-slices

√

√

Speculative Precomputation Tutorial

Retired Instruction Buffer

Construct p-slices to prefetch delinquent loads
Buffers information on an in-order run of
committed instructions

Comparable to trace cache fill unit
FIFO structure
RIB normally idle (> 99% of the time)

We’ll spend more time on this.

Speculative Precomputation Tutorial

PCPCPCPC
ICache

Register
Renaming

Centralized
Instruction

Queue

Re-order Buffer
Re-order Buffer

Re-order Buffer
Re-order Buffer

Monolithic
Register

File

Execution
Units

Data
Cache

Delinquent Load
Identification
Table (DLIT)

Retired
Instruction

Buffer (RIB)

Modified Pipeline
Identify delinquent loads

Construct P-slices

Spawn and manage P-slices

√

√

Speculative Precomputation Tutorial

PCPCPCPC
ICache

Register
Renaming

Centralized
Instruction

Queue

Re-order Buffer
Re-order Buffer

Re-order Buffer
Re-order Buffer

Monolithic
Register

File

Execution
Units

Data
Cache

Delinquent Load
Identification
Table (DLIT)

Retired
Instruction

Buffer (RIB)

Slice
Information
Table (SIT)

Modified Pipeline
Identify delinquent loads

Construct P-slices

Spawn and manage P-slices

√

√

√

Speculative Precomputation Tutorial

Slice Information Table

Queried each cycle with addresses of main
thread instructions decoded on that cycle

If trigger instruction decoded, rename stage notified
Eliminates ineffective p-slices

P-slice evaluated every 128K committed instructions

Speculative Precomputation Tutorial

P-slice Construction with RIB
Analyze instructions between two
instances of delinquent load

Most recent to oldest
Add to p-slice instructions which
produce live-in set register

Update register live-in set
When analysis terminates, p-slice has
been constructed and live-in registers
identified

Speculative Precomputation Tutorial

Example
struct DATATYPE {

int val[10];
};

DATATYPE * data [100];

for(j = 0; j < 10; j++) {
for(i = 0; i < 100; i++) {

data[i]->val[j]++;
}

}

loop:
I1 load r1=[r2]
I2 add r3=r3+1
I3 add r6=r3-100
I4 add r2=r2+8
I5 add r1=r4+r1
I6 load r5=[r1]
I7 add r5=r5+1
I8 store [r1]=r5
I9 blt r6, loop

Speculative Precomputation Tutorial

P-slice Construction Example

add r5 = r5+1
store [r1] = r5
blt r6, loop

Instruction

load r1 = [r2]
add r3 = r3+1
add r6 = r3-100
add r2 = r2+8
add r1 = r4+r1
load r5 = [r1]

load r5 = [r1]

Analyze from
recent

Included Live-in Set

To oldest

Speculative Precomputation Tutorial

P-slice Construction Example

add r5 = r5+1
store [r1] = r5
blt r6, loop

Instruction

load r1 = [r2]
add r3 = r3+1
add r6 = r3-100
add r2 = r2+8
add r1 = r4+r1
load r5 = [r1]

load r5 = [r1]
Included

r2, r4

Live-in Set

r2, r4
r2, r4
r2, r4
r1, r4
r1, r4
r1, r4
r1, r4

r1√

√

√

Speculative Precomputation Tutorial

P-slice Construction Example
Instruction P-Slice

load r1 = [r2]
add r1 = r4+r1
load r5 = [r1]

Live-in Set

r2,r4

Delinquent Load
is trigger

add r5 = r5+1
store [r1] = r5
blt r6, loop
load r1 = [r2]
add r3 = r3+1
add r6 = r3-100
add r2 = r2+8
add r1 = r4+r1
load r5 = [r1]

load r5 = [r1]

Speculative Precomputation Tutorial

1

1.05

1.1

1.15

1.2

1.25

m
cf vp

r
ar

t

eq
ua

ke
m

gr
id

sw
im

em
3d m
st

pe
rim

et
er

tre
ea

dd
av

er
ag

e

Sp
ee

du
p

O
ve

r n
o

Dy
na

m
ic

 S
P 1.41

Speculative Precomputation Tutorial

Advanced SP Optimizations
All aimed at earlier prefetch initiation
All require two instances of delinquent load in RIB
Simply implemented with multiple passes through RIB

load r5=[r1]
add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]

RIB

add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]

trigger

Speculative Precomputation Tutorial

Advanced SP Optimizations

load r5=[r1]
add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]

RIB

add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]
add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]

trigger

Speculative Precomputation Tutorial

Trigger Placement
add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]
add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]

trigger
Live ins:
r2, r4

Speculative Precomputation Tutorial

add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]
add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]

add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]
add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]

Induction Unrolling [Roth, Sohi,
HPCA 7]

trigger
Live ins:
r2, r4

Speculative Precomputation Tutorial

add r5=r5+1
store [r1]=r5
blt r6, loop
load r1=[r2]
add r3=r3+1
add r6=r3-100
add r2=r2+8
add r1=r4+r1
load r5=[r1]

Chaining Slices
Requires undetermined
(typically small) number of
passes.
Uses previous passes’ live ins,
to continue adding instructions
that effect future iterations’
delinquent loads.
Ends when no more changes
introduced.
Loop back branch added to
end.

Speculative Precomputation Tutorial

Dynamic SP Optimizations –
Chaining P-slices

Enable p-slice to repeat its execution in
same thread context

Reduce contention for thread contexts
Eliminate redundant induction variable
updates

Must manage runahead distance
Kill threads when non-speculative thread
leaves program section

Speculative Precomputation Tutorial

Advanced Dynamic SP
Optimizations, summary

Goal – spawn threads earlier
Assume control flow repeated

Perform additional analysis passes
Retain live-in set from previous pass

Increased construction latency but keeps
RIB simple

Little performance impact

Speculative Precomputation Tutorial

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

basic dynamic SP alternate trigger induction unroll chaining

Sp
ee

du
p

ov
er

 n
o

D
yn

am
ic

 S
P

2 Thread Contexts

4 Thread Contexts

8 Thread Contexts

Speculative Precomputation Tutorial

Dynamic SP Conclusion
Dynamic Speculative Precomputation
aggressively targets delinquent loads

Thread based prefetching scheme
Uses back-end (off critical path) instruction
analyzers
P-slices constructed with no external software
support

Basic form gives average 14% speedup
Multi-pass RIB analysis enables aggressive
p-slice optimizations

Average 33% speedup using chaining with eight
contexts

Speculative Precomputation Tutorial

Speculative Precomputation

Speculative Precomputation: Long-range
Prefetching of Delinquent Loads, Collins,
Wang, Tullsen, Hughes, Lee, Lavery,
Shen, In ISCA 2001
Dynamic Speculative Precomputation,
Collins, Tullsen, Wang, Shen, In Micro
2001

Speculative Precomputation Tutorial

Outline -- Architectural Support for
Helper Threads

Branch Correlation Support
Dynamic Speculative Precomputation --
Arch Support for Creation and
Management of Helper Threads
Register Integration – Arch Support for
Reuse of Values in Helper Threads

Speculative Precomputation Tutorial

Helper Thread Value Reuse

Focus on one particular technique, derived from
two papers:

Register Integration [Roth, Sohi, Micro 2000] –
identifies instructions that are being re-executed with
the exact same dependencies (squash reuse)
Speculative Data Driven Multithreading (DDMT)
[Roth, Sohi, HPCA 2001] – constructs helper threads
in such a way that register integration kicks in
automatically.

Speculative Precomputation Tutorial

Motivation (Register Integration
for Squash Reuse)
Assume Unified Physical Register
File (PRF)

Logical Register Map (LRM)
sequentially “manages” PRF

Conventional mis-speculation
recovery

PR values intact
LRM restored to prior state, PR’s
become “garbage”

Register Integration: why write?
value is already in PR

add
sub
sll
beq
add
add

sub
mul
add

add
sub
sll
beq
add
add

sub
mul
add

add
sub
sll
beq
add
add

sub
mul
add

Speculative Precomputation Tutorial

Register Integration
Key: must locate PR holding squashed
value

Use a second mapping of PRF
Integration Table (IT): describe each PR using
creating instruction

Operation (PC) and input PR’s
Encodes “reusability criteria”

Speculative Precomputation Tutorial

Integration in Action (Squash Reuse)

X Y
LRM

INSTPC
Dyn. Instrs Comment

No/Alloc/IT enter
Integrate/IT disable
Squash/IT enable

Integrate/IT disable

48 49

PC I1 I2 O
IT

E

48 49Y = 2;A2: Alloc/IT enterA2: 49 N
48 47X = 1;A1: Alloc/IT enterA1: 48 N

51 50X++;A5: Alloc/IT enterA5: 48 51 N

48 49if (!X)A3: Predict taken/IT enterA3: 48 N
48 50Y = 3;A4: Alloc/IT enterA4: 50 N

51 52Y++;A6: Alloc/IT enterA6: 50 52 N
53 52X++;A7: Alloc/IT enterA7: 51 53 N

X++;A5: A5: 48 51 Y
Y++;A6: A6: 50 52 Y
X++;A7: A7: 51 53 Y53 54 N

51 49 N
5451 A6: 49 54 N

51
50

52
53

Y
Y

Y
Y

E = Eligible (can be integrated)

PR cannot simultaneously be mapped by two active instructions

48
4849
5051
51

[animations courtesy Amir Roth]

Speculative Precomputation Tutorial

What Integration (Reuse)
Accomplishes

Improved performance (first-order effects)

Reduced resource contention

Speculative Precomputation Tutorial

Data-Driven Multithreading (DDMT)
DDMT: an implementation of pre-execution
which uses register integration to recapture
some of the computation done by the main
thread.

Speculative Precomputation Tutorial

Example Identify PIs

Use profiling to find PIs

for (node=list; node; node = node->next)

node->val -= node->neighbor->val * node->coeff;
if (node->neighbor != NULL)

STATIC CODE

ldt f1, 16(r2) I5
ldt f0, 16(r1)I4

ldt f2, 24(r1)I6
ldt f1, 16(r2)I5
ldt f0, 16(r1)I4

ldq r1, 0(r1)I10
stt f0, 16(r1)I9
subt f0, f3, f0I8
mult f1, f2, f3I7

beq r2, I10I3
ldq r2, 8(r1)I2
beq r1, I12I1
br I1I11

beq r2, I10I3
ldq r2, 8(r1)I2
beq r1, I12I1
br I1I5
ldq r1, 0(r1)I3
INSTPC

D
Y

N
A

M
IC

 I
N

SN
 S

TR
EA

M

Simplified loop from EM3D

Speculative Precomputation Tutorial

ldq r1, 0(r1)I10

ldt f1, 16(r2) I5
ldt f0, 16(r1)I4

ldt f2, 24(r1)I6
ldt f1, 16(r2) I5
ldt f0, 16(r1)I4

ldq r1, 0(r1)I10
stt f0, 16(r1)I9
subt f0, f3, f0I8
mult f1, f2, f3I7

beq r2, I10I3
ldq r2, 8(r1)I2
beq r1, I12I1
br I1I11

beq r2, I10I3
ldq r2, 8(r1)I2
beq r1, I12I1
br I1I11
ldq r1, 0(r1)I10
INSTPCExample Extract DDTs

ldt f1, 16(r2) I5

beq r2, I10I3
ldq r2, 8(r1)I2

ldq r1, 0(r1)I10

ldt f1, 16(r2) I5
beq r2, I10I3
ldq r2, 8(r1)I2
ldq r1, 0(r1)I10
INSTPC

DDTC (static)

I10:

Examine program traces
Start with Problem Insts (PIs)
Work backwards, gather backward-slices

Pack last N-1 slice instructions into DDT (choice
of N a longer topic).

Load DDT into DDTC (DDT$)

Use first instruction as trigger.

Speculative Precomputation Tutorial

Example Pre-Execute DDTs

ldt f0, 16(r1)I4

beq r1, I12I1
br I1I11
ldq r1, 0(r1)I10

ldq r2, 8(r1)I2
beq r2, I10I3

ldt f1, 16(r2) I5

stt f0, 16(r1)I9
subt f0, f3, f0I8ldt f1, 16(r2) I5
mult f1, f2, f3I7beq r2, I10I3
ldt f2, 24(r1)I6ldq r2, 8(r1)I2

INSTPC ldt f1, 16(r2) I5ldq r1, 0(r1)I10

D
D

T

ldt f0, 16(r1)I4
beq r2, I10I3
ldq r2, 8(r1)I2
beq r1, I12I1
br I1I11
ldq r1, 0(r1)I10
INSTPC

…
ldq r1, 0(r1)I10
INSTPC

DDTC (static)

I10:

M
T

MT integrates DDT results
Instr’s not re-executed → reduces contention
Shortens MT critical path
Pre-computed branch avoids mis-prediction

MT, DDT execute in parallel

Executed a trigger instr?
Fork DDT (µarch)

DDT initiates cache miss
“Absorbs” latency

Speculative Precomputation Tutorial

DDMT Performance

Cache misses
Speedups vary, 10-15%
DDT “unrolling”: increases
latency tolerance (paper) 0

5

10
15

20
25

30

parser mcf gzip vpr em3d mstEx
ec

ut
io

n
Ti

m
e

Sa
ve

d
(%

)

0

5
10

15

20
25

30

eon crafty gzip vpr em3d bhEx
ec

ut
io

n
Ti

m
e

Sa
ve

d
(%

)Branch mispredictions
Speedups lower, 5-10%
More PIs, lower coverage
Branch integration
!= perfect branch prediction

Effects mix

Speculative Precomputation Tutorial

More Results

DDT overhead: fetch utilization
~5% (reasonable)
Fewer MT fetches (always)

Contention
Fewer total fetches

Early branch resolution

0

20

40

60

80

100

120

mcf.l vpr.l mst.l eon.b gzip.b em3d.b

Fe
tc

he
d

D
D

M
T/

B
as

e
(%

)

DDT
MT

0

20

40

60

80

100

mcf.l vpr.l mst.l eon.b gzip.b em3d.bD
D

T
In

te
gr

at
ed

/F
et

ch
ed

 (%
)

NOT COMPLETED
COMPLETED

DDT utility: integration rates
Vary, mostly ~30% (low)
Completed: well done
Not completed: a little late

Speculative Precomputation Tutorial

DDMT
Creates pre-execution slices similar to other proposed
schemes, with insts from main thread.
Retains results from helper thread that are valid for main
thread, saving time and execution resources.
Automatically solves the branch correlation problem.

Cannot trigger a slice early (must have register rename
table intact)
Integration requires exact dataflow match (but
prefetching may still happen).
Cannot pre-execute multiple instances of same
instruction in one slice.

Speculative Precomputation Tutorial

Architectural Support for Helper
Threading – Summary

Need architectural support to correlate helper-
thread generated predictions with dynamic
instances of branches in the main thread.
Dynamic Speculative Precomputation identifies
problem instructions, creates threads, manages
threads, all in hardware. Combines advantages
of hardware prefetching with thread-based
prefetching.
Register Integration allows some computed
values to be reused by the main thread.

