
Appears inProceedings of the 10th Annual International Conference on Parallel Architectures and Compilation Techniques,
Barcelona, Spain, September 2001.

Multi-Chain Prefetching: Effective Exploitation of
Inter-Chain Memory Parallelism for Pointer-Chasing Codes

Nicholas Kohout Seungryul Choi Dongkeun Kim, Donald Yeung
Intel Corp. Computer Science Dept. Electrical & Computer Eng. Dept.

Univ. of Maryland, College Park Univ. of Maryland, College Park
nicholas.j.kohout@intel.com choi@cs.umd.edu fdongkeun,yeungg@eng.umd.edu

Abstract

Pointer-chasing applications tend to traverse composed data
structures consisting of multiple independent pointer chains.
While the traversal of any single pointer chain leads to the se-
rialization of memory operations, the traversal of independent
pointer chains provides a source of memory parallelism. This pa-
per presentsmulti-chain prefetching, a technique that utilizes off-
line analysis and a hardware prefetch engine to prefetch multiple
independent pointer chains simultaneously, thus exploiting inter-
chain memory parallelism for the purpose of memory latency tol-
erance.

This paper makes three contributions. First, we introduce a
scheduling algorithm that identifies independent pointer chains in
pointer-chasing codes and computes a prefetch schedule that over-
laps serialized cache misses across separate chains. Our anal-
ysis focuses on static traversals. We also propose using specu-
lation to identify independent pointer chains in dynamic traver-
sals. Second, we present the design of a prefetch engine that tra-
verses pointer-based data structures and overlaps multiple pointer
chains according to our scheduling algorithm. Finally, we conduct
an experimental evaluation of multi-chain prefetching and com-
pare its performance against two existing techniques, jump pointer
prefetching [9] and prefetch arrays [6].

Our results show multi-chain prefetching improves execution
time by 40% across six pointer-chasing kernels from the Olden
benchmark suite [14], and by 8% across four SPECInt CPU2000
benchmarks. Multi-chain prefetching also outperforms jump
pointer prefetching and prefetch arrays by 28% on Olden, and
by 12% on SPECInt. Furthermore, speculation can enable multi-
chain prefetching for some dynamic traversal codes, but our tech-
nique loses its effectiveness when the pointer-chain traversal order
is unpredictable. Finally, we also show that combining multi-chain
prefetching with prefetch arrays can potentially provide higher
performance than either technique alone.

This research was supported in part by NSF Computer Systems Architec-
ture grant CCR-0093110 and NSF CAREER Award CCR-0000988.

1. Introduction

Prefetching, whether using software [11, 7, 1], hardware [3,
13, 5], or hybrid [2, 4] techniques, has proven successful at hid-
ing memory latency for applications that employ regular data
structures (e.g. arrays). Unfortunately, these techniques are far
less successful for applications that employ linked data structures
(LDSs) due to the memory serialization effects associated with
LDS traversal, known as thepointer chasing problem. The mem-
ory operations performed for array traversal can issue in paral-
lel because individual array elements can be referenced indepen-
dently. In contrast, the memory operations performed for LDS
traversal must dereference a series of pointers, a purely sequen-
tial operation. The lack ofmemory parallelismprevents conven-
tional prefetching techniques from overlapping cache misses suf-
fered along a pointer chain.

Recently, researchers have begun investigating prefetching
techniques for LDS traversal, by addressing the pointer-chasing
problem using two different approaches. Techniques in the first ap-
proach [17, 15, 10, 9], which we callstateless techniques, prefetch
pointer chains sequentially using only the natural pointers belong-
ing to the LDS. Existing stateless techniques do not exploit any
memory parallelism at all, or they exploit only limited amounts of
memory parallelism. Consequently, they lose their effectiveness
when the LDS traversal code contains insufficient work to hide the
serialized memory latency.

Techniques in the second approach [6, 16, 9], which we call
jump pointer techniques, insert additional pointers into the LDS
to connect non-consecutive link elements. These “jump pointers”
allow prefetch instructions to name link elements further down
the pointer chain without sequentially traversing the intermedi-
ate links, thus creating memory parallelism along a single chain
of pointers. Because they create memory parallelism using jump
pointers, jump pointer techniques tolerate pointer-chasing cache
misses even when the traversal loops contain insufficient work to
hide the serialized memory latency. However, jump pointer tech-
niques cannot commence prefetching until the jump pointers have
been installed. Furthermore, the jump pointer installation code
increases execution time, and the jump pointers themselves con-
tribute additional cache misses.

In this paper, we propose a new stateless prefetching technique

1

<compute>

l

ptr = A[i];

3l

ptr = ptr->next;

 while (ptr) { for (i=0; i < N; i++) {

w2

w1

a). b).

Memory Parallelism} <compute>
ptr = ptr->next;

 while (ptr) {

}
}

PD = 2
INIT(ID ll);

stall stall stall

INIT(ID aol);

stall stall

Figure 1. Traversing pointer chains using a prefetch engine. a). Traversal of a single linked list. b). Traversal of
an array of lists data structure.

calledmulti-chain prefetching. Multi-chain prefetching prefetches
a single chain of pointers sequentially. However, multi-chain
prefetching aggressively prefetches multiple independent pointer
chains simultaneously, thus exploiting the natural memory paral-
lelism that exists between separate pointer-chasing traversals. Pre-
vious stateless techniques [16, 15] have demonstrated the potential
gains of suchinter-chain prefetching for simple “backbone and
rib” structures only. Multi-chain prefetching is powerful enough
to exploit inter-chain memory parallelism for any arbitrary data
structure composed of lists, trees, and arrays. Due to its aggres-
sive exploitation of inter-chain memory parallelism, multi-chain
prefetching can tolerate serialized memory latency even when
the traversal loops have very little work; hence, it can achieve
higher performance than previous stateless techniques. Further-
more, multi-chain prefetching does not use jump pointers. As a
result, it does not suffer the overheads associated with creating
and managing jump pointer state.

Our work makes three contributions in the context of multi-
chain prefetching. First, we introduce a scheduling algorithm
that identifies independent pointer chains and computes a prefetch
schedule that overlaps serialized cache misses across separate
chains. Our analysis focuses on LDS traversals where the order in
which separate chains are traversed is known a priori. We also pro-
pose and evaluate extensions to our analysis that use speculation to
identify the independent pointer chains in dynamic traversal codes;
however, our techniques cannot handle codes in which the pointer-
chain traversals are highly unpredictable. Second, we present
the design of a programmable prefetch engine that performs LDS
traversal outside the main CPU, and prefetches the LDS data ac-
cording to the prefetch schedule computed by our scheduling al-
gorithm. Finally, we conduct an experimental evaluation of multi-
chain prefetching, and compare it against jump pointer prefetch-
ing [16, 9] and prefetch arrays [6]. Our results show multi-chain
prefetching improves execution time by 40% across six pointer-
chasing kernels from the Olden benchmark suite [14], and by
8% across four SPECInt CPU2000 benchmarks. We also show
multi-chain prefetching outperforms jump pointer prefetching and
prefetch arrays by 28% on Olden, and by 12% on SPECInt.

The rest of this paper is organized as follows. Section 2 fur-
ther explains the essence of our approach. Section 3 presents our
scheduling technique. Section 4 introduces our prefetch engine,
and Section 5 presents experimental results. Finally, Section 6
discusses related work, and Section 7 concludes the paper.

2. Multi-Chain Prefetching

This section provides an overview of our multi-chain prefetch-
ing technique. Section 2.1 presents the idea of exploiting inter-
chain memory parallelism. Then, Section 2.2 discusses the identi-
fication of independent pointer chain traversals.

2.1. Exploiting Inter-Chain Memory Parallelism

The multi-chain prefetching technique augments a commodity
microprocessor with a programmable hardware prefetch engine.
During an LDS computation, the prefetch engine performs its own
traversal of the LDS in front of the processor, thus prefetching the
LDS data. The prefetch engine, however, is capable of traversing
multiple pointer chains simultaneously when permitted by the ap-
plication. Consequently, the prefetch engine can tolerate serialized
memory latency by overlapping cache misses across independent
pointer-chain traversals.

To illustrate the idea of exploitinginter-chain memory paral-
lelism, we first describe how our prefetch engine traverses a single
chain of pointers. Figure 1a shows a loop that traverses a linked
list of length three. Each loop iteration, denoted by a hashed box,
containsw1 cycles of work. Before entering the loop, the pro-
cessor executes a prefetch directive,INIT (IDll), instructing the
prefetch engine to initiate traversal of the linked list identified by
theIDll label. If all three link nodes suffer anl-cycle cache miss,
the linked list traversal requires3l cycles since the link nodes must
be fetched sequentially. Assumingl > w1, the loop alone contains
insufficient work to hide the serialized memory latency. As a re-
sult, the processor stalls for3l � 2w1 cycles. To hide these stalls,
the prefetch engine would have to initiate its linked list traversal
3l�2w1 cycles before the processor traversal. For this reason, we
call this delay thepre-traversal time(PT).

While a single pointer chain traversal does not provide much
opportunity for latency tolerance, pointer chasing computations
typically traverse many pointer chains, each of which is often in-
dependent. To illustrate how our prefetch engine exploits such
independent pointer-chasing traversals, Figure 1b shows a doubly
nested loop that traverses an array of lists data structure. The outer
loop, denoted by a shaded box withw2 cycles of work, traverses
an array that extracts a head pointer for the inner loop. The inner
loop is identical to the loop in Figure 1a.

2

In Figure 1b, the processor again executes a prefetch directive,
INIT (IDaol), causing the prefetch engine to initiate a traversal
of the array of lists data structure identified by theIDaol label. As
in Figure 1a, the first linked list is traversed sequentially, and the
processor stalls since there is insufficient work to hide the serial-
ized cache misses. However, the prefetch engine then initiates the
traversal of subsequent linked lists in a pipelined fashion. If the
prefetch engine starts a new traversal everyw2 cycles, then each
linked list traversal will initiate the requiredPT cycles in advance,
thus hiding the excess serialized memory latency across multiple
outer loop iterations. The number of outer loop iterations required
to overlap each linked list traversal is called theprefetch distance
(PD). Notice whenPD > 1, the traversals of separate chains
overlap, exposing inter-chain memory parallelism despite the fact
that each chain is fetched serially.

2.2. Finding Independent Pointer-Chain Traversals

In order to exploit inter-chain memory parallelism, it is neces-
sary to identify multiple independent pointer chains so that our
prefetch engine can traverse them in parallel and overlap their
cache misses, as illustrated in Figure 1. An important question
is whether such independent pointer-chain traversals can be easily
identified.

Many applications perform static traversals of linked data
structures in which the order of link node traversal does not de-
pend on runtime data. For such static traversals, it is possible
to determine the traversal order a priori via analysis of the code,
thus identifying the independent pointer-chain traversals at com-
pile time. In this paper, we present an LDS descriptor framework
that compactly expresses the LDS traversal order for such static
traversals. The descriptors in our framework also contain the data
layout information used by our prefetch engine to generate the se-
quence of load and prefetch addresses necessary to perform the
LDS traversal at runtime.

While analysis of the code can identify independent pointer
chains for static traversals, the same approach does not work for
dynamic traversals. In dynamic traversals, the order of pointer-
chain traversal is determined at runtime. Consequently, the simul-
taneous prefetching of independent pointer chains is limited since
the chains to prefetch are not known until the traversal order is
computed, which may be too late to enable inter-chain overlap.
For dynamic traversals, it may be possible tospeculatethe or-
der of pointer-chain traversal if the order is predictable. In this
paper, we focus on static LDS traversals. Later in Section 5.3,
we illustrate the potential for predicting pointer-chain traversal or-
der in dynamic LDS traversals by extending our basic multi-chain
prefetching technique with speculation.

3. Prefetch Chain Scheduling

This section describes how to schedule prefetch chains in
multi-chain prefetching. While Section 2 describes prefetch chain
scheduling for a simple array of lists example, the techniques we
will present are powerful enough to perform scheduling for any
arbitrary data structure composed of lists, trees, and arrays. Sec-
tion 3.1 first introduces an LDS descriptor framework that cap-

tures the information required for prefetch chain scheduling. This
information is also used by the prefetch engine to perform LDS
traversal at runtime, described later in Section 4. Then, Section 3.2
describes a scheduling algorithm that computes the scheduling pa-
rameters (PT andPD) from the LDS descriptors.

3.1. LDS Descriptor Framework

To perform prefetch chain scheduling, the programmer or com-
piler first analyzes the LDS traversal code and extracts two types
of information: data structure layout, and traversal code work. The
data structure layout information captures the dependences be-
tween memory references, thus identifying pointer-chasing chains.
Along with the data structure layout information, the traversal
code work information enables our scheduling algorithm, pre-
sented in Section 3.2, to compute the scheduling parameters. In
the rest of this section, we define anLDS descriptor framework
used to specify both types of information.

Data structure layout is specified using two descriptors, one
for arrays and one for linked lists. Figure 2a illustrates the ar-
ray descriptor which contains three parameters: base (B), length
(L), and stride (S). These parameters specify the base address
of the array, the number of array elements traversed by the ap-
plication code, and the stride between consecutive memory ref-
erences, respectively, and represent the memory reference stream
for a constant-stride array traversal. Figure 2b illustrates the linked
list descriptor which contains three parameters similar to the array
descriptor. For the linked list descriptor, theB parameter specifies
the root pointer of the list, theL parameter specifies the number
of link elements traversed by the application code, and the�S pa-
rameter specifies the offset from each link element address where
the “next” pointer is located.

To specify the layout of complex data structures, our frame-
work permits descriptor composition. Composition is represented
as a directed graph whose nodes are array or linked list descriptors,
and whose edges denote address generation dependences. Two
types of composition are allowed: nested and recursive. In a nested
composition, each address generated by an outer descriptor forms
theB parameter for multiple instantiations of a dependent inner
descriptor. A parameter,O, can be specified to shift the base ad-
dress of each inner descriptor by a constant offset. Such nested
descriptors capture the data access patterns of nested loops. In the
top half of Figure 2c, we show a nested descriptor corresponding
to the traversal of a 2-D array. We also permit indirection between
nested descriptors denoted by a “*” in front of the outer descriptor,
as illustrated in the lower half of Figure 2c. Although the exam-
ples in Figure 2c only use a single descriptor at each nesting level,
our framework permits multiple inner descriptors to be nested un-
derneath a single outer descriptor.

In addition to nested composition, our framework also per-
mits recursive composition. Recursively composed descriptors are
identical to nested descriptors, except the dependence edge flows
backwards. Since recursive composition introduces cycles into the
descriptor graph, our framework requires each recursive arc to be
annotated with the depth of recursion,D, to bound the size of the
data structure. Figure 2d shows a simple recursive descriptor in
which the inner and outer descriptors are one and the same, corre-
sponding to a simple tree data structure. (Notice theD parameter,

3

a). Constant stride

b). Pointer chase

(B,L,S)

(B,L,*S)

B
S

B
S

B

S1

S2

c). Nested Composition
(B,L1,S1)

(O2,L2,S2)

S1

S2

B

*(B,L 1,S1)

(O2,L2,S2)

d). Recursive Composition

*(B,O,L,S)

B S

D

O2

O2

Figure 2. LDS descriptors: data layout information.

a). Work parameter

(B,L,S)[w]

for (i = 0; i < L; i++) {

... = B[i] ...
}

w

for (i = 0; i < L1; i++) {

... = data[j];

}

w1
for (j = 0; j < L2; j++) {

}
w2

o2
*(B,L 1,S1)[w1]

(O2,L2,S2)[w2]

b). Offset parameter

data = B[i];

[o2]

Figure 3. LDS descriptors: traversal code work in-
formation.

as well as theL parameter for linked lists, is used only for schedul-
ing purposes. Our prefetch engine, discussed in Section 4, does
not require information about the extent of dynamic data struc-
tures, and instead prefetches until it encounters a null-terminated
pointer.)

Finally, Figure 3 shows the extensions to the LDS descriptors
that provide the traversal code work information. The work infor-
mation specifies the amount of work performed by the application
code as it traverses the LDS. To provide the work information, the
LDS descriptor graph is annotated with two types of parameters.
Theworkparameter,w, specifies the amount of work per traversal
loop iteration. Shown in Figure 3a, the work parameter annotates
each array or linked list descriptor. Theoffsetparameter,o, is used
for composed descriptors, and specifies the amount of work sepa-
rating the first iteration of the inner descriptor from each iteration
of the outer descriptor. Shown in Figure 3b, the offset parameter
annotates each composition dependence edge. If there are multi-
ple control paths in a loop, we compute w and o for the shortest
path. Choosing the smallest w and o tends to schedule prefetches
earlier than necessary. In section 5.2, we will evaluate the effects
of early prefetch arrival.

In this work we perform the code analyses to extract the de-
scriptor information by hand. However, for basic data structures
as shown in Figures 2a and 2b, descriptors can be automatically
identified by a compiler [9]. For complex data structures like Fig-

ures 2c and 2d, extensions to the compiler in [9] are needed to
identify the relationship between parent and child data structures.

3.2. Scheduling Algorithm

Once an LDS descriptor graph has been constructed from a
traversal code, we compute a prefetch chain schedule from the
descriptor graph. This section presents the algorithm that com-
putes the scheduling information. Section 3.2.1 describes our ba-
sic scheduling algorithm assuming the descriptor graph contains
descriptor parameters that are all statically known. Then, Sec-
tion 3.2.2 briefly describes how our scheduling algorithm handles
graphs with unknown descriptor parameters.

3.2.1. Static Descriptor Graphs

Our scheduling algorithm computes three scheduling parameters
for each descriptori in the descriptor graph: whether the descrip-
tor requiresasynchronousor synchronousprefetching, the pre-
traversal time,PTi, and the prefetch distance,PDi. Figure 4
presents our scheduling algorithm. The algorithm is defined recur-
sively, and processes descriptors from the leaves of the descriptor
graph to the root. The “for (N � 1 down to0)” loop processes
the descriptors in the required bottom-up order assuming we as-
sign a number between0 andN � 1 in top-down order to each of
theN descriptors in the graph. Our scheduling algorithm assumes
there are no cycles in the graph. Our scheduling algorithm also
assumes the cache miss latency to physical memory,l, is known.
Due to lack of space, we are unable to describe how cyclic graphs,
arising from recursively composed descriptors, are handled by our
algorithm. The interested reader should refer to [8].

We now describe the computation of the three scheduling pa-
rameters for each descriptor visited in the descriptor graph. We
say descriptori requires asynchronous prefetching if it traverses
a linked list and there is insufficient work in the traversal loop to
hide the serialized memory latency (i.e. l > wi). Otherwise, if
descriptori traverses an array or ifl � wi, then we say it re-
quires synchronous prefetching.1 The “if” conditional test in Fig-

1This implies that linked list traversals in whichl <= wi use syn-
chronous prefetching since prefetching one link element per loop iteration
can tolerate the serialized memory latency when sufficient work exists in
the loop code.

4

for (i = N-1 down to 0) {

if ((descriptor i is pointer-chasing) and (l > wi)) {
PTi = Li * (l - wi) + wi + PTnesti

} else {

PTi = l + PTnesti

}

}

(2)

(4)

PTnesti =
composed k via indirection

(PTk - ok)max (1)

PDi = (3)

PDi = (5)PTi / wi

∞;

Figure 4. Scheduling algorithm for static descrip-
tor graphs.

ure 4 computes whether asynchronous or synchronous prefetching
is used.

Next, we compute the pre-traversal time,PTi. For asyn-
chronous prefetching, we must overlap that portion of the se-
rialized memory latency that cannot be hidden underneath the
traversal loop itself with work prior to the loop. Figure 1 shows
PT = 3l� 2w1 for a 3-iteration pointer-chasing loop. In general,
PTi = Li�(l�wi)+wi. For synchronous prefetching, we need to
only hide the cache miss for the first iteration of the traversal loop,
soPTi = l. Equations 2 and 4 in Figure 4 computePTi for asyn-
chronous and synchronous prefetching, respectively. Notice these
equations both contain an extra term,PTnesti. PTnesti seri-
alizesPTi andPTk, the pre-loop time for any nested descriptor
k composed via indirection (see lower half of Figure 2c). Serial-
ization occurs between composed descriptors that use indirection
because of the data dependence caused by indirection. We must
sumPTk intoPTi; otherwise, the prefetches for descriptork will
not initiate early enough. Equation 1 in Figure 4 considers all de-
scriptors composed under descriptori that use indirection and sets
PTnesti to the largestPTk found. The offset,ok, is subtracted
because it overlaps with descriptork’s pre-loop time.

Finally, we compute the prefetch distance,PDi. Descriptors
that require asynchronous prefetching do not have a prefetch dis-
tance; we denote this by settingPDi =1. The prefetch distance
for descriptors that require synchronous prefetching is exactly the
number of loop iterations necessary to overlap the pre-traversal
time, which isdPTi

wi
e. Equations 3 and 5 in Figure 4 compute the

prefetch distance for asynchronous and synchronous prefetching,
respectively.

3.2.2. Dynamic Descriptor Graphs

Section 3.2.1 describes our scheduling algorithm assuming the de-
scriptor graph is static. In most descriptor graphs, the list length
and recursion depth parameters are unknown. Because the com-
piler does not know the extent of dynamic data structures a pri-
ori, it cannot exactly schedule all the prefetch chains using our
scheduling algorithm. However, we make the key observation
that all prefetch distances in a dynamic graph are bounded, re-
gardless of actual chain lengths. Consider the array of lists ex-
ample from Figure 1. The prefetch distance of each linked list

is PD = dPT=w2e. As the list length,L, increases, bothPT
andw2 increase linearly. In practice, the ratioPTi=wi increases
asymptotically to an upper bound value as pointer chains grow
in length. Our scheduling algorithm can compute the bounded
prefetch distance for all descriptors by substituting large values
into the unknown parameters in the dynamic descriptor graph.
Since bounded prefetch distances are conservative, they may initi-
ate prefetches earlier than necessary. In Section 5, we will quantify
this effect.

4. Prefetch Engine

In this section, we introduce a programmable prefetch engine
that performs LDS traversal outside of the main CPU. Our prefetch
engine uses the data layout information described in Section 3.1
and the scheduling parameters described in Section 3.2 to guide
LDS traversal.

The hardware organization of the prefetch engine appears in
Figure 5. The design requires three additions to a commodity mi-
croprocessor: the prefetch engine itself, a prefetch buffer, and two
new instructions calledINIT andSY NC. During LDS traver-
sal, the prefetch engine fetches data into the prefetch buffer if it
is not already in the L1 cache at the time the fetch is issued (a
fetch from main memory is placed in the L2 cache on its way to
the prefetch buffer). All processor load/store instructions access
the L1 cache and prefetch buffer in parallel. A hit in the prefetch
buffer provides the data to the processor in 1 cycle, and also trans-
fers the corresponding cache block from the prefetch buffer to the
L1 cache.

In the rest of this section, we describe how the prefetch en-
gine generates addresses and schedules prefetches from the LDS
descriptors introduced in Section 3.1. Our discussion uses the ar-
ray of lists example from Figure 1. The code for this example,
annotated withINIT andSY NC instruction macros, appears in
Figure 6a. Finally, we analyze the cost of the prefetch engine hard-
ware.

4.1. Address Descriptor Table

The prefetch engine consists of two hardware tables, theAd-
dress Descriptor Tableand theAddress Generator Table, as shown
in Figure 5. The Address Descriptor Table (ADT) stores the data
layout information from the LDS descriptors described in Sec-
tion 3.1. Each array or linked list descriptor in an LDS descriptor
graph occupies a single ADT entry, identified by the graph num-
ber,ID (each LDS descriptor graph is assigned a uniqueID), and
the descriptor number,i, assuming the top-down numbering of de-
scriptors discussed in Section 3.2.1. TheParent field specifies
the descriptor’s parent in the descriptor graph. TheDescriptor
field stores all the parameters associated with the descriptor such
as the base, length, and stride, and whether or not indirection is
used. Finally, thePD field stores the prefetch distance computed
by our scheduling algorithm for descriptori. Figure 6b shows the
contents of the ADT for our array of lists example, whereID = 4.

Before prefetching can commence, the ADT must be initial-
ized with the data layout and prefetch distance information for the
application. We memory map the ADT and initialize its contents

5

L1 Cache
Prefetch
Buffer

Processor
Prefetch
Engine

INIT(ID)

SYNC(ID,i)

L2 Cache and Main Memory

Address Descriptor Table

Index Address

Address Generator Table

ID IDi Parent i CountDescriptor PD

Prefetch Engine

.....

.....

.....

.....

.....

.....

Figure 5. Prefetch engine hardware and integration with a commodity microprocessor.

via normal store instructions. Most ADT entries are filled at pro-
gram initialization time. However, some ADT parameters are un-
known until runtime (e.g. the base address of a dynamically allo-
cated array). Such runtime parameters are written into the ADT
immediately prior to eachINIT instruction. Although Figure 6a
does not show the ADT initialization code, our experimental re-
sults in Section 5 include all ADT initialization overheads. No-
tice the ADT contents should be saved and restored during context
switches. Since context switches are extremely infrequent in our
benchmarks, we assume the ADT contents persist across context
switches and do not model the save and restore overheads.

4.2. Address Generator Table

The Address Generator Table (AGT) generates the LDS traver-
sal address stream specified by the data layout information stored
in the ADT. AGT entries are activated dynamically. Once acti-
vated, each AGT entry generates the address stream for a single
LDS descriptor. AGT entry activation can occur in one of two
ways. First, the processor can execute anINIT (ID) instruction
to initiate prefetching for the data structure identified byID. Fig-
ure 6c1 shows how executingINIT (4) activates the first entry
in the AGT. The prefetch engine searches the ADT for the entry
matchingID = 4 andi = 0 (i.e. entry (4; 0) which is the root
node for descriptor graph #4). An AGT entry(4; 0) is allocated
for this descriptor, theIndex field is set to one, and theAddress
field is set toB0, the base parameter from ADT entry(4; 0). Once
activated, AGT entry(4; 0) issues a prefetch for the first array el-
ement at addressB0, denoted by a solid bar in Figure 6c1.

Second, when an active AGT entry computes a new address, a
new AGT entry is activated for every node in the descriptor graph
that is a child of the active AGT entry. As shown in Figure 6c1, a
second AGT entry,(4; 1), is activated after AGT entry(4; 0) issues
its prefetch because(4; 0) is the parent of(4; 1) in the ADT. This
new AGT entry is responsible for prefetching the first linked list;
however, it stalls initially because it must wait for the prefetch
of B0 to complete before it can compute its base address,�B0.
Eventually, the prefetch ofB0 completes, AGT entry(4; 1) loads
the value, and issues a prefetch for address�B0, denoted by a
dashed bar in Figure 6c2.

Figures 6c3 and 6c4 show the progression of the array of lists
traversal. In Figure 6c3, AGT entry(4; 0) generates the address
and issues the prefetch for the second array element atB0 + S0.
As a result, itsIndex value is incremented, and another AGT
entry (4; 1) is activated to prefetch the second linked list. Once

again, this entry stalls initially, but continues when the prefetch of
B0 + S0 completes, as shown in Figure 6c4. Furthermore, Fig-
ures 6c3 and 6c4 show the progress of the original AGT entry
(4; 1) as it traverses the first linked list serially. In Figure 6c3, the
AGT entry is stalled on the prefetch of the first link node. Eventu-
ally, this prefetch completes and the AGT entry issues the prefetch
for the second link node at address�B0 + S1. In Figure 6c4, the
AGT entry is waiting for the prefetch of the second link node to
complete.

AGT entries are deactivated once theIndex field in the AGT
entry reaches theL parameter in the corresponding ADT entry, or
in the case of a pointer-chasing AGT entry, if a null-terminated
pointer is reached during traversal.

4.3. Prefetch Scheduling

When an active AGT entry generates a new memory address,
the prefetch engine must schedule a prefetch for the memory ad-
dress. Prefetch scheduling occurs in two ways. First, if the
prefetches for the descriptor should issue asynchronously (i.e.
PDi = 1), the prefetch engine issues a prefetch for the AGT
entry as long as the entry is not stalled. Consequently, prefetches
for asynchronous AGT entries traverse a pointer chain as fast as
possible, throttled only by the serialized cache misses that occur
along the chain. The(4; 1) AGT entries in Figure 6 are scheduled
in this fashion.

Second, if the prefetches for the descriptor should issue syn-
chronously (i.e. PDi 6= 1), then the prefetch engine synchro-
nizes the prefetches with the code that traverses the correspond-
ing array or linked list. We rely on the compiler or programmer
to insert aSY NC instruction at the top of the loop or recursive
function call that traverses the data structure to provide the syn-
chronization information, as shown in Figure 6a. Furthermore,
the prefetch engine must maintain the proper prefetch distance
as computed by our scheduling algorithm for such synchronized
AGT entries. ACount field in the AGT entry is used to maintain
this prefetch distance. TheCount field is initialized to thePD
value in the ADT entry (computed by the scheduling algorithm)
upon initial activation of the AGT entry, and is decremented each
time the prefetch engine issues a prefetch for the AGT entry, as
shown in Figures 6c1 and 6c2. In addition, the prefetch engine
“listens” for SY NC instructions. When aSYNC executes, it
emits both anID and ani value that matches an AGT entry. On a
match, theCount value in the matched AGT entry is incremented.
The prefetch engine issues a prefetch as long asCount > 0. Once

6

ptr = A[i];

for (i=0; i < N; i++) {

<compute>
ptr = ptr->next;

 while (ptr) {

}
}

INIT(4);

SYNC(4,0);

Index Address
Address Generator Table

ID

ID

i Parent

i Count

Descriptor PD

4 0 - (B0,L0,S0) 2

4 1 0 *(,*S1) ∞∞

4 0 B0 21

4 0 B01
4 1 *B01 ∞

4 0 B0+S0 02
4 1 stall(*B0+S1)1 ∞

4 0 B0+S0 02
4 1 stall(*(*B0+S1)+S1)2 ∞
4 1 *(B0+S0)1 ∞

a). b).

c1).

c2).

c3).

c4).

pref B0

pref *B0

pref B0+S0

pref *(B0+S0)

load B0

load B0+S0

4 1 stall(B0)1 ∞

4 1 stall(B0+S0)1 ∞

1

1 0

B0 = &A[0];
L0 = N;
S0 = sizeof(void *);
S1 = &((type_of_ptr) 0->next);

Address Descriptor Table

Figure 6. LDS traversal example. a). Array of lists traversal code annotated with prefetch directives. b). ADT
contents. c). AGT contents at 5 different times during LDS traversal.

Count reaches0, as it has in Figure 6c2, the prefetch engine waits
for theCount value to be incremented before issuing the prefetch
for the AGT entry, which occurs the next time the corresponding
SYNC instruction executes (not shown in Figure 6).

4.4. Silicon Area Cost

The hardware cost of multi-chain prefetching is dictated by the
sizes of the ADT, AGT, and prefetch buffer structures. The ADT
should be sized to accommodate the applications’ LDS descrip-
tors. For our benchmarks, 50 entries are sufficient. Assuming
each ADT entry consumes 11 bytes, the ADT size is 550 bytes.
The AGT should be sized to accommodate the maximum num-
ber of active AGT entries. For our benchmarks, we found 128
entries are sufficient. Assuming each AGT entry consumes 10
bytes, the AGT size is 1280 bytes. Finally, we assume a 1-Kbyte
prefetch buffer. Consequently, the prefetch engine and buffer con-
sume roughly 2.75-Kbytes of on-chip RAM. While this analysis
does not include the logic necessary to compute prefetch addresses
nonetheless, we estimate the cost of multi-chain prefetching to be
quite modest.

5. Results

In this section, we conduct an evaluation of multi-chain
prefetching and compare it to jump pointer and prefetch array
techniques. After describing our experimental methodology in
Section 5.1, Section 5.2 presents the main results for multi-chain
prefetching. Then, Section 5.3 examines some extensions to fur-
ther improve performance.

5.1. Methodology

We constructed a detailed event-driven simulator of the
prefetch engine architecture described in Section 4 coupled with
a state-of-the-art RISC processor. Our simulator uses the proces-
sor model from the SimpleScalar Tool Set to model a 800MHz
dynamically scheduled 4-way issue superscalar with a 32-entry in-
struction window and an 8-entry load-store dependency queue. We

assume a split 16-Kbyte instruction/16-Kbyte data direct-mapped
write-through L1 cache with a 32-byte block size. We assume a
unified 512-Kbyte 4-way set-associative write-back L2 cache with
a 64-byte block size. The L1 and L2 caches have 8 and 16 MSHRs,
respectively, to enable significant memory concurrency. We also
assume an aggressive memory sub-system with 8.5 Gbytes/sec
peak bandwidth and 64 banks. Bus and bank contention are faith-
fully simulated.

We assume the prefetch engine has a 50-entry ADT, and a 128-
entry AGT with the capability to compute an effective address
in 1 cycle, as described in Section 4.4. The ADT and AGT are
sized to accommodate the maximum number of required entries
for our applications; hence, our simulator does not model evic-
tions from these tables. Furthermore, we assume a 32-entry 1-
Kbyte fully associative LRU prefetch buffer. Each prefetch buffer
entry effectively serves as an MSHR, so the prefetch engine does
not share MSHRs with the L1 cache. Our simulator models con-
tention for the L1 data cache port and prefetch buffer port between
the prefetch engine and the CPU, giving priority to CPU accesses.
Finally, access to the L1 cache/prefetch buffer, L2 cache, and main
memory costs 1 cycle, 10 cycles, and 70 cycles respectively.

Our experimental evaluation of multi-chain prefetching uses
applications from both the Olden [14] and SPECInt CPU2000
benchmark suites. Table 7 lists the applications, their input param-
eters and simulation windows. The columns labeled SkipInst and
SimInst list the number of skipped instructions and simulated in-
structions, respectively, starting at the beginning of each program.
The simulation windows are chosen to avoid lengthy simulations
and to experiment only on the representative regions. Some ap-
plications, like EM3D, Health and MCF, have small simulation
windows because their behaviors are highly repetitive. For each
application, we identified the loops and LDSs to be prefetched, ex-
tracted the LDS descriptor information from Section 3.1, and com-
puted the scheduling information as described in Section 3.2. We
also inserted INIT and SYNC instructions into the traversal code.
To instrument the jump pointer techniques, we followed previ-
ously published algorithms for jump pointer prefetching [9] (also
known as “software full jumping” [16]) and prefetch arrays [6].

In the Olden benchmarks, there is a single “primary data
structure” per application responsible for practically all the cache

7

Olden Benchmarks
Application Input Parameters Primary Data Structure SkipInst SimInst

EM3D 10,000 nodes array of pointers 27M 541K
MST 1024 nodes list of lists 183M 29,324K
Treeadd 20 levels balanced binary tree 143M 33,554K
Health 5 levels, 500 iters balanced quadtree of lists 162M 505K
Perimeter 4K x 4K image unbalanced quadtree 14M 16,993K
Bisort 250,000 numbers balanced binary tree 377M 241,364K

SPECInt CPU2000 Benchmarks
Application Input Parameters SkipInst SimInst

MCF inp.in 2,616M 3,200K
Twolf ref 124M 36,648K
Parser 2.1.dict -batch< ref.in 257M 32,146K
Perl -I./lib diffmail.pl 2 550 15 24 23 100 125M 34,446K

Figure 7. Benchmark summary.

0

0.2

0.4

0.6

0.8

1

MCF Twolf Parser Perl

F
ra

ct
io

n
of

ca
ch

e
m

is
ses

Other
Dynamic
Static Array of Lists
Static List of Lists

Figure 8. Fraction of cache
misses suffered in static and
dynamic pointer-chasing traver-
sals in SPECInt.

misses. The SPECInt benchmarks, however, are far more com-
plex. We used simulation-based profiling to identify the loops and
data structures responsible for the cache misses in SPECInt. Fig-
ure 8 shows a breakdown of the cache misses by traversal type.
Our simulations show that static traversal of list of lists and ar-
ray of lists structures account for 89%, 80%, 48%, and 12% of all
cache misses in MCF, Twolf, Parser, and Perl, respectively. Fur-
thermore, dynamic traversals account for only 11% of the cache
misses in Twolf and Parser. (The list of lists component for MCF
is both static and dynamic, as we will explain in Section 5.3. Here,
we categorize it as a static traversal.) For SPECInt, we instru-
ment prefetching only for the loops in the static list of lists and
array of lists categories reported in Figure 8. We also profiled 7
other SPECInt benchmarks, but found no measurable cache misses
caused by LDS traversal.

5.2. Multi-Chain Prefetching Performance

Figure 9 presents the results of multi-chain prefetching for our
applications. For each application, we report the execution time
without prefetching, labeled “NP,” with jump pointer prefetch-
ing, labeled “JP,” and with multi-chain prefetching, labeled “MC.”
For applications that traverse linked lists, we also report the exe-
cution time of prefetch arrays in combination with jump pointer
prefetching, labeled “PA” (the other applications do not benefit
from prefetch arrays, so we do not instrument them). Each bar
in Figure 9 has been broken down into four components: time
spent executing useful instructions, time spent executing prefetch-
related instructions, and time spent stalled on instruction and data
memory accesses, labeled “Busy,” “Overhead,” “I-Mem,” and “D-
Mem,” respectively. All times have been normalized against the
NP bar for each application.

Comparing the MC bars versus the NP bars, multi-chain
prefetching eliminates a significant fraction of the memory stall,
reducing overall execution time by as much as 69% and by 40%
on average for the Olden benchmarks, and by as much as 16% and
by 8% on average for the SPECInt benchmarks. Comparing the

MC bars versus the JP and PA bars, multi-chain prefetching out-
performs jump pointer prefetching and prefetch arrays on all ten
applications except MCF, reducing execution time by as much as
66% and by 28% on average for the Olden benchmarks, and by as
much as 33% and by 12% on average for the SPEC benchmarks.
For MCF, prefetch arrays outperforms multi-chain prefetching by
20%. In the rest of this section, we examine in detail several fac-
tors that contribute to multi-chain prefetching’s performance ad-
vantage and, in some cases, disadvantage.

Software Overhead. Multi-chain prefetching incurs notice-
ably lower software overhead as compared to jump pointer
prefetching and prefetch arrays for EM3D, MST, Health, MCF,
Twolf, Parser, and Perl. For MST and Parser, jump pointer
prefetching and prefetch arrays suffer high jump pointer creation
overhead. On the first traversal of an LDS, jump pointer prefetch-
ing and prefetch arrays must create pointers for prefetching sub-
sequent traversals; consequently, applications that perform a small
number of LDS traversals spend a large fraction of time in prefetch
pointer creation code. In MST and Parser, the linked list struc-
tures containing jump pointers and prefetch arrays are traversed
4 times and 10 times on average, respectively, resulting in over-
head that costs 62% (for MST) and 24% (for Parser) as much as
the traversal code itself. In addition to prefetch pointer creation
overhead, jump pointer prefetching and prefetch arrays also suffer
prefetch pointer management overhead. Applications that modify
the LDS during execution require fix-up code to keep the jump
pointers consistent as the LDS changes. Health performs frequent
link node insert and delete operations. In Health, jump pointer
fix-up code is responsible for most of the 190% increase in the
traversal code cost. Since multi-chain prefetching only uses natu-
ral pointers for prefetching, it does not suffer any prefetch pointer
creation or management overheads.

The jump pointer prefetching and prefetch array versions of
EM3D and MCF suffer high prefetch instruction overhead. Jump
pointer prefetching and prefetch arrays insert address computation
and prefetch instructions into the application code. In multi-chain
prefetching, this overhead is off-loaded onto the prefetch engine

8

0

0.5

1

1.5

N
or

m
a

liz
e

d
E

xe
cu

tio
n

T
ime

D-Mem
I-Mem
Overhead
Busy

PerlEM3D ParserTwolfMCFBisortPerimeterHealthTreeaddMST
NP JP MC JPNP JP MCPA JP NP JP MC JP NP JP MCPA JP NP JP MCJP NP JP MCJP NP JP MCPA JP NP JP MCPA JP NP JP MCPA JP NP JP MCPA

Figure 9. Execution time for no prefetching (NP), jump pointer prefetching (JP), prefetch arrays (PA), and multi-
chain prefetching (MC). Each execution time bar has been broken down into useful cycles (Busy), prefetch-
related cycles (Overhead), I-cache stalls (I-Mem), and D-cache stalls (D-Mem).

0

0.5

1

1.5

C
ac

he
m

is
s

br
ea

kd
ow

n

Inacc
Full
Partial
L2-Hit
Mem

PerlEM3D ParserTwolfMCFBisortPerimeterHealthTreeaddMST
NP JP MCJP NP JP MCPA JPNP JP MC JPNP JP MCPA JPNP JP MC JPNP JP MC JPNP JP MCPA JPNP JP MCPA JP NP JP MCPA JPNP JP MCPA

Figure 10. Cache miss breakdown. Each bar has been broken down into misses to main memory (Mem), hits in
the L2 (L2-Hit), partially covered misses (Partial), fully covered misses (Full), and inaccurate prefetches (Inacc).

(at the expense of hardware support). While multi-chain prefetch-
ing requires the use ofINIT andSY NC instructions, these in-
structions introduce negligible overhead. In EM3D and MCF, the
traversal loops are inexpensive, hence the added code in jump
pointer prefetching and prefetch arrays dilates the loop cost by
64% and 49%, respectively. Prefetch instructions also contribute
to the software overheads visible in MST, Health, and the other
three SPEC benchmarks. Finally, Twolf and Perl suffer increased
I-cache stalls. Due to the large instruction footprints of these ap-
plications, the code expansion caused by prefetch instrumentation
results in significantly higher I-cache miss rates. Since multi-chain
prefetching does not require significant software instrumentation,
the impact on I-cache performance is minimized.

Coverage. To further compare multi-chain prefetching and
jump pointer techniques, Figure 10 shows a breakdown of cache
misses. The NP bars in Figure 10 break down the L1 cache misses
without prefetching into misses satisfied from the L2 cache, la-
beled “L2-Hit,” and misses satisfied from main memory, labeled
“Mem.” The JP, PA, and MC bars show the same two components,
but in addition show those cache misses that are fully covered and
partially covered by prefetching, labeled “Full” and “Partial,” re-
spectively. Figure 10 also shows inaccurate prefetches, labeled
“Inacc.” Inaccurate prefetches fetch data that is never accessed by
the processor. All bars are normalized against the NP bar for each
application.

Multi-chain prefetching achieves higher cache miss coverage
for Treeadd, Perimeter, and Bisort due to first-traversal prefetch-
ing. (First-traversal prefetching also benefits MST, but we will
explain this below). In multi-chain prefetching, all LDS traversals
can be prefetched. Jump pointer prefetching and prefetch arrays,
however, are ineffective on the first traversal because they must

create the prefetch pointers before they can perform prefetching.
For Treeadd and Perimeter, the LDS is traversed only once, so
jump pointer prefetching does not perform any prefetching. In
Bisort, the LDS is traversed twice, so prefetching is performed
on only half the traversals. In contrast, multi-chain prefetching
converts 90%, 28%, and 7% of the original cache misses into
prefetch buffer hits for Treeadd, Perimeter, and Bisort, respec-
tively, as shown in Figure 10. Figure 9 shows an execution time
reduction of 44%, 2.4%, and 5.7% for these applications.

Figure 10 also shows the importance of prefetching early link
nodes. MST and the four SPECInt benchmarks predominantly tra-
verse short linked lists. In jump pointer prefetching, the firstPD
(prefetch distance) link nodes are not prefetched because there
are no jump pointers that point to these early nodes. However,
both prefetch arrays and multi-chain prefetching are capable of
prefetching all link nodes in a pointer chain; consequently, they
enjoy significantly higher cache miss coverage on applications
that traverse short linked lists. This explains the performance ad-
vantage of prefetch arrays and multi-chain prefetching over jump
pointer prefetching for MST, MCF, and Twolf in Figure 9.

Early Prefetch Arrival. Figure 10 shows multi-chain
prefetching is unable to achieve any fully covered misses for
EM3D, MST, and Health. This limitation is due to early prefetch
arrival. Because multi-chain prefetching begins prefetching a
chain of pointers prior to the traversal of the chain, a large frac-
tion of prefetches arrive before they are accessed by the processor
and occupy the prefetch buffer. For applications with long pointer
chains, the number of early prefetches can exceed the prefetch
buffer capacity and cause thrashing. Since prefetched data is also
placed in the L2 cache, the processor will normally enjoy an L2
hit where greater capacity prevents thrashing, but the L1-L2 la-

9

tency is exposed. This gives rise to the partially covered misses
for EM3D, MST, and Health in multi-chain prefetching, as shown
in Figure 10.

Despite the early prefetch arrival problem, multi-chain
prefetching still outperforms jump pointer prefetching and
prefetch arrays for EM3D, MST, and Health. In EM3D, limited
prefetch buffer capacity causes thrashing even for jump pointer
prefetching. Since multi-chain prefetching has lower software
overhead, it achieves a 20% performance gain over jump pointer
prefetching on EM3D, as shown in Figure 9. Comparing prefetch
arrays and multi-chain prefetching for MST, we see that prefetch
arrays leaves 48% of the original misses to memory unprefetched.
This is due to the inability to perform first-traversal prefetching us-
ing prefetch arrays. In contrast, multi-chain prefetching converts
all of MST’s “D-Mem” component into L2 hits (these appear as
partially covered misses). Consequently, Figure 9 shows a 66%
performance gain for multi-chain prefetching over prefetch arrays
on MST. Finally, for Health, Figure 10 shows that prefetch ar-
rays converts 71% of the original cache misses into fully covered
misses, while multi-chain prefetching converts only 49% of the
original misses into partially covered misses due to early prefetch
arrival. As a result, prefetch arrays tolerates more memory la-
tency than multi-chain prefetching. However, due to the large soft-
ware overhead necessary to create and manage prefetch pointers
in Health, multi-chain prefetching outperforms prefetch arrays by
30%, as shown in Figure 9.

Memory Overhead. In addition to software overhead for cre-
ating and managing prefetch pointers, jump pointer prefetching
and prefetch arrays also incur memory overhead to store the
prefetch pointers. This increases the working set of the applica-
tion and contributes additional cache misses. Figure 10 shows that
for Health, MCF, Twolf, Parser, and Perl, the total number of cache
misses incurred by prefetch arrays compared to no prefetching has
increased by 41%, 36%, 11%, 67%, and 17%, respectively. (In
Perl, the decrease in cache misses for “JP” is due to conflict misses
that disappear after jump pointers are added, an anomaly that we
did not see in any other benchmark.)

The effect of memory overhead is most pronounced in Parser.
This application traverses several hash tables consisting of arrays
of short linked lists. Prefetch arrays inserts extra pointers into the
hash table arrays to point to the link elements in each hash bucket.
Unfortunately, the hash array elements are extremely small, so the
prefetch arrays significantly enlarge each hash array, often dou-
bling or tripling its size. Figure 10 shows the accesses to the
prefetch arrays appear as additional uncovered cache misses. In
Parser, the increase in uncovered misses outnumber the covered
misses achieved by prefetching. Consequently, Figure 9 shows
a net performance degradation of 39% for Parser due to prefetch
arrays. For the same reasons, Twolf and Perl experience perfor-
mance degradations of 8% and 10%, respectively. In contrast,
multi-chain prefetching does not incur memory overhead since it
does not use prefetch pointers, so the miss coverage achieved via
prefetching translates to performance gains. Figure 9 shows a gain
of 16%, 7%, and 1% for Twolf, Parser, and Perl, respectively.

In Health and MCF, the memory overhead is primarily due to
jump pointers rather than prefetch arrays. Since the jump pointers
themselves can be prefetched along with the link nodes, the addi-

tional cache misses due to memory overhead can be covered via
prefetching. Consequently, memory overhead does not adversely
affect performance. In fact for MCF, prefetch arrays outperforms
multi-chain prefetching, as shown in Figure 9. MCF traverses a
complex structure consisting of multiple “ribbed” lists, also known
as “backbone and rib” structures [16]. While each backbone and
rib is traversed statically, there is very little memory parallelism.
Hence, multi-chain prefetching achieves only a 9% performance
gain. In contrast, prefetch arrays can still overlap misses along
each backbone, and outperforms multi-chain prefetching by 20%.

5.3. Extending Multi-Chain Prefetching

In this section, we conduct a preliminary investigation of two
extensions to our technique: speculative multi-chain prefetching
and combining multi-chain prefetching with prefetch arrays.

As discussed in Section 2.2, compile-time analysis cannot de-
termine the pointer-chain traversal order for dynamic traversals;
however, it might be possible to speculate the pointer-chain traver-
sal order. To investigate the potential gains of speculation, we in-
strumented speculative multi-chain prefetching for MCF. In MCF,
a complex structure consisting of multiple backbone and rib struc-
tures is traversed. At each backbone node, there are 3 possible
“next” pointers to pursue, leading to 3 different backbone nodes.
A loop is used to traverse one of the next pointers until a NULL
pointer is reached. This loop performs the traversal of one back-
bone chain statically, so our basic multi-chain prefetching tech-
nique can be used to prefetch the traversal. Unfortunately, as
described in Section 5.2, this loop yields very little inter-chain
memory parallelism. However, when this loop terminates, another
backbone and rib structure is selected for traversal from a previ-
ously traversed backbone node. Since the selection of the new
backbone node is performed through a data-dependent computa-
tion, the next backbone and rib traversal is not known a priori.

To enable the simultaneous traversal of multiple backbone and
rib structures, we use our prefetch engine to launch prefetches
down all 3 pointers speculatively at every backbone node tra-
versed. Although we cannot guarantee that any one of these point-
ers will be traversed in the future, by pursuing all of them, we
are guaranteed that the next selected backbone and rib structure
will get prefetched. To limit the number of inaccurate prefetches
caused by the mis-speculated pointers, we prefetch each chain
speculatively to a depth of 5. The “SP” bar in Figure 11 shows the
execution time for MCF using speculative multi-chain prefetch-
ing. Speculation increases performance by 16% over no specula-
tion. This leads to a performance gain of 16% over jump pointer
prefetching; however, prefetch arrays still holds a performance ad-
vantage of 4%.

Another extension we evaluate is the combination of multi-
chain prefetching and prefetch arrays. Multi-chain prefetching
exploits inter-chain memory parallelism while prefetch arrays ex-
ploits intra-chain memory parallelism. It is natural to combine the
two techniques to exploit both types of parallelism. The “SP-PA”
bar in Figure 11 shows the execution time for MCF using specula-
tive multi-chain prefetching and prefetch arrays in concert. In this
version of MCF, the prefetch engine speculatively prefetches down
multiple pointers at each backbone node. Then, prefetch arrays is
used during the traversal of each backbone to expose intra-chain

10

0

0.5

1

N
or

m
a

liz
e

d
E

xe
cu

tio
n

T
im

e Mem
Overhead
Busy

SP-PANP JP PA MC SP

Figure 11. Preliminary per-
formance results of specula-
tive multi-chain prefetching
and combining multi-chain
prefetching with prefetch ar-
rays for MCF.

0

0.5

1

1.5

2

2.5

3

3.5

N
or

m
al

iz
ed

E
xe

cu
tio

n
T

im
e Mem

Overhead
Busy

JP MC
4GB

JP MC
8GB

JP MC
1GB

JP MC
2GB

PA MC
4GB

PA MC
8GB

PA MC
1GB

PA MC
2GB

PA MC
4GB

PA MC
8GB

PA MC
1GB

PA MC
2GB

PA MC
4GB

PA MC
8GB

PA MC
1GB

PA MC
2GB

EM3D MST Health MCF

Figure 12. Prefetching performance at 8, 4, 2, and 1 GB/sec.

memory parallelism. The combined technique outperforms SP and
PA in isolation by 20% and 16%, respectively.

5.4. Limited Memory Bandwidth Performance

Sections 5.2 and 5.3 examine multi-chain prefetching per-
formance assuming an aggressive memory sub-system with 8.5
Gbytes/sec peak bandwidth. In this section, we investigate the sen-
sitivity of our results to available memory bandwidth. Figure 12
shows the execution time for EM3D, MST, Health, and MCF as
memory bandwidth is varied from 8 GB/sec down to 1 GB/sec.
Results are reported for both multi-chain prefetching and prefetch
arrays. The remaining applications consume very little memory
bandwidth (less than 650 MB/sec average memory bandwidth), so
we do not report their results.

As expected, Figure 12 shows performance degrades as mem-
ory bandwidth is decreased. However, multi-chain prefetch-
ing maintains its performance advantage over prefetch arrays for
EM3D, MST, and Health at all memory bandwidths. Furthermore,
the performance difference between multi-chain prefetching and
prefetch arrays for MCF closes at low memory bandwidths with
multi-chain prefetching slightly outperforming prefetch arrays at
1 GB/sec. Compared to multi-chain prefetching, prefetch arrays
generates more memory traffic because it must fetch the prefetch
pointers in addition to the application data. As memory bandwidth
becomes scarce, the added traffic due to the prefetch pointers in-
creases contention in the memory system, resulting in more mem-
ory stalls.

6. Related Work

Our work is closely related to Dependence-Based Prefetch-
ing (DBP) [15]. DBP identifies recurrent pointer-chasing loads
in hardware, and then prefetches them sequentially in a prefetch
engine. DBP can exploit inter-chain memory parallelism for
simple backbone and rib traversals; however, DBP cannot cre-
ate inter-chain overlap for more complex traversals because it

pursues only one link node ahead of the CPU to minimize use-
less prefetches. Multi-chain prefetching uses off-line analysis to
aggressively schedule inter-chain prefetches for general pointer-
chasing traversals. Off-line analysis also reduces hardware com-
plexity. However, DBP does not require programmer or compiler
effort.

A follow-on paper to DBP [16] proposed Cooperative Chain
Jumping, a technique that combines DBP with jump pointers for
backbone and rib structures. The jump pointers create intra-chain
memory parallelism along the backbone, and then DBP hardware
sequentially prefetches each rib. Cooperative Chain Jumping ex-
ploits inter-chain memory parallelism; however, once again it does
so only for backbone and rib traversals, and it requires jump point-
ers.

Unroll-and-jam [12] is a software technique that exploits mem-
ory parallelism. For applications with multiple independent
pointer chains, like array of lists traversals, unroll-and-jam initi-
ates independent instances of the inner loop from separate outer
loop iterations in order to expose multiple read misses within the
same instruction window. Since unroll-and-jam is a loop trans-
formation, it must preserve the original program semantics. As
a result, the scope of applicable loops are limited compared to
multi-chain prefetching which annotates prefetch directives into
the program code.

In addition to DBP and unroll-and-jam, three other stateless
prefetching techniques have been proposed [17, 10, 9]. Also, re-
searchers have proposed jump pointer techniques [6, 16, 9]. The
merits and shortcomings of these techniques have already been
discussed in Section 1, and an evaluation of multi-chain prefetch-
ing against jump pointer techniques was conducted in Section 5.

7. Conclusion

We draw several conclusions from our work. First, we con-
clude that inter-chain memory parallelism exists in many pointer-
chasing applications. We find it is abundant in the pointer-chasing
kernels from the Olden benchmark suite. Perhaps more interest-

11

ingly, we also find it exists in full applications from the SPECInt
CPU2000 benchmark suite within several loops that perform static
list of lists and array of lists traversals.

Second, we conclude that the exploitation of inter-chain mem-
ory parallelism through multi-chain prefetching provides signifi-
cant performance gains. Our results show multi-chain prefetch-
ing reduces overall execution time by 40% in Olden, and by 8%
in SPECInt. We also show that multi-chain prefetching outper-
forms jump pointer prefetching and prefetch arrays by 28% in
Olden, and by 12% in SPECInt. The performance advantage of
multi-chain prefetching comes from its stateless nature. Multi-
chain prefetching avoids the software overheads for creating and
managing prefetch pointers. In addition, multi-chain prefetching
can perform first-traversal prefetching, and can effectively toler-
ate the cache misses of early nodes, which is important for short
lists. Furthermore, multi-chain prefetching is effective for appli-
cations employing small link structures. Jump pointer techniques
insert prefetch pointers that can significantly increase the number
of cache misses, reducing or in some cases nullifying the perfor-
mance gains derived from prefetching.

Finally, we conclude that speculation can uncover inter-chain
memory parallelism for some dynamic traversals, but for MCF,
prefetch arrays still outperforms speculative multi-chain prefetch-
ing by 4%. In future work, we plan to apply speculation more ag-
gressively to see if multi-chain prefetching can outperform jump
pointer techniques for dynamic traversals. However, we con-
clude that jump pointer techniques are preferable to multi-chain
prefetching for highly dynamic traversals where inter-chain mem-
ory parallelism is difficult to identify.

We view inter-chain memory parallelism as another source of
memory parallelism that supplements, rather than replaces, intra-
chain memory parallelism. We believe any solution to the pointer-
chasing problem should consider both forms of memory paral-
lelism. While our results already show that the combination of
multi-chain prefetching and prefetch arrays can outperform either
technique alone, more work is needed to better understand when
the two techniques should be combined, or when to choose one
technique over the other across different applications.

8. Acknowledgments

The authors would like to thank Chau-Wen Tseng for helpful
discussions on the LDS descriptor framework, and Bruce Jacob
for helpful comments on previous drafts of this paper.

References

[1] D. Callahan, K. Kennedy, and A. Porterfield. Software
Prefetching. InProceedings of the 4th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 40–52, April 1991.

[2] T.-F. Chen. An Effective Programmable Prefetch Engine for
On-Chip Caches. InProceedings of the 28th Annual Sympo-
sium on Microarchitecture, pages 237–242. IEEE, 1995.

[3] T.-F. Chen and J.-L. Baer. Effective Hardware-Based Data
Prefetching for High-Performance Processors.Transactions
on Computers, 44(5):609–623, May 1995.

[4] T. cker Chiueh. Sunder: A Programmable Hardware Prefetch
Architecture for Numerical Loops. InProceedings of Super-
computing ’94, pages 488–497. ACM, November 1994.

[5] N. P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers. InProceedings of the 17th Annual Inter-
national Symposium on Computer Architecture, pages 364–
373, Seattle, WA, May 1990. ACM.

[6] M. Karlsson, F. Dahlgren, and P. Stenstrom. A Prefetching
Technique for Irregular Accesses to Linked Data Structures.
In Proceedings of the 6th International Conference on High
Performance Computer Architecture, Toulouse, France, Jan-
uary 2000.

[7] A. C. Klaiber and H. M. Levy. An Architecture for Software-
Controlled Data Prefetching. InProceedings of the 18th In-
ternational Symposium on Computer Architecture, pages 43–
53, Toronto, Canada, May 1991. ACM.

[8] N. Kohout, S. Choi, and D. Yeung. Multi-Chain Prefetching:
Exploiting Memory Parallelism in Pointer-Chasing Codes.
UMD-SCA TR-2000-01, University of Maryland Systems
and Computer Architecture Group, June 2000.

[9] C.-K. Luk and T. C. Mowry. Compiler-Based Prefetching
for Recursive Data Structures. InProceedings of the Seventh
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 222–
233, Cambridge, MA, October 1996. ACM.

[10] S. Mehrotra and L. Harrison. Examination of a Memory
Access Classification Scheme for Pointer-Intensive and Nu-
meric Programs. InProceedings of the 10th ACM Inter-
national Conference on Supercomputing, Philadelphia, PA,
May 1996. ACM.

[11] T. Mowry. Tolerating Latency in Multiprocessors through
Compiler-Inserted Prefetching.Transactions on Computer
Systems, 16(1):55–92, February 1998.

[12] V. S. Pai and S. Adve. Code Transformations to Improve
Memory Parallelism. InProceedings of the International
Symposium on Microarchitecture, November 1999.

[13] S. Palacharla and R. E. Kessler. Evaluating Stream Buffers as
a Secondary Cache Replacement. InProceedings of the 21st
Annual International Symposium on Computer Architecture,
pages 24–33, Chicago, IL, May 1994. ACM.

[14] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Support-
ing Dynamic Data Structures on Distributed Memory Ma-
chines.ACM Transactions on Programming Languages and
Systems, 17(2), March 1995.

[15] A. Roth, A. Moshovos, and G. S. Sohi. Dependence Based
Prefetching for Linked Data Structures. InProceedings of
the Eigth International Conference on Architectural Support
for Programming Languages and Operating Systems, Octo-
ber 1998.

[16] A. Roth and G. S. Sohi. Effective Jump-Pointer Prefetching
for Linked Data Structures. InProceedings of the 26th In-
ternational Symposium on Computer Architecture, Atlanta,
GA, May 1999.

[17] C.-L. Yang and A. R. Lebeck. Push vs. Pull: Data Movement
for Linked Data Structures. InProceedings of the Interna-
tional Conference on Supercomputing, May 2000.

12

