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ABSTRACT
The trend for multicore processors is towards increasing
numbers of cores, with 100s of cores–i.e. large-scale chip
multiprocessors (LCMPs)–possible in the future. The key
to realizing the potential of LCMPs is the cache hierarchy,
so studying how memory performance will scale is crucial.
Reuse distance (RD) analysis can help architects do this.
In particular, recent work has developed concurrent reuse
distance (CRD) and private reuse distance (PRD) profiles
to enable analysis of shared and private caches. Also, tech-
niques have been developed to predict profiles across prob-
lem size and core count, enabling the analysis of configura-
tions that are too large to simulate.

This paper applies RD analysis to study the scalability
of multicore cache hierarchies. We present a framework
based on CRD and PRD profiles for reasoning about the
locality impact of core count and problem scaling. We find
interference-based locality degradation is more significant
than sharing-based locality degradation. For 256 cores run-
ning small problems, the former occurs at small cache sizes,
allowing moderate capacity scaling of multicore caches to
achieve the same cache performance (MPKI) as a single-core
cache. At very large problems, interference-based locality
degradation increases significantly in many of our bench-
marks. For shared caches, this prevents most of our bench-
marks from achieving constant-MPKI scaling within a 256
MB capacity budget; for private caches, all benchmarks can-
not achieve constant-MPKI scaling within 256 MB.

1. INTRODUCTION
The trend for high-performance microprocessors is towards

an increasing number of on-chip cores. Today, CPUs with
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8–10 state-of-the-art cores or 10s of smaller cores [1, 6] are
commonplace. In the near future, CPUs with 100s of cores–
i.e. large-scale chip multiprocessors (LCMPs) [7, 21]–will be
possible. Such processors will offer enormous performance
potential for programs that exhibit sufficient thread-level
parallelism to utilize all of the available cores.

Fully realizing the performance potential of LCMPs, how-
ever, will be challenging. The problem is scalability. Many
bottlenecks will threaten to limit performance scaling, one
of which will be the memory hierarchy. As the number of
on-chip cores increases–and potentially, as problem size in-
creases too–greater pressure will be placed on the cache hier-
archy. Although caches will also scale, memory performance
may still degrade if the cache hierarchy is unable to keep on-
and off-chip traffic at reasonable levels. In this case, the per-
formance gains from core count scaling will be limited.

Given the importance of memory performance to multi-
core scalability, studying how parallel programs utilize the
on-chip cache hierarchy as processors and problems scale
to the LCMP level will be crucial. This will not only shed
light on the nature and severity of the bottlenecks mentioned
above, it will also inform architects on how best to scale the
cache hierarchy to keep bottlenecks at bay.

Currently, the main approach for studying memory per-
formance is architectural simulation. Unfortunately, simu-
lating CPUs with 100s of cores is extremely slow, at best.
Simulating LCMPs running moderate–let alone large–input
problems is beyond the capabilities of even the fastest sim-
ulators. Moreover, simulations only represent individual ar-
chitecture configurations and input problems. So, studying
scaling trends requires running simulation sweeps. Unfortu-
nately, the cross-product of core counts, cache sizes, cache
organizations, and problem sizes can yield 1000s to millions
of configurations. With simulation’s high cost, it is infeasible
to explore such combinatorially large configuration spaces.

A powerful tool that can help architects study multicore
scaling is reuse distance (RD) analysis. RD analysis mea-
sures a program’s memory reuse distance histogram, or RD
profile, capturing the application-level locality responsible
for cache performance. Once acquired, RD profiles can be
used to predict cache performance across numerous config-
urations which can dramatically accelerate scaling analysis.
For example, in sequential programs, an RD profile can pre-
dict performance at any cache size, permitting exhaustive
analysis along the cache capacity dimension after acquiring
just one profile.

Compared to the sequential case, RD analysis for multi-
core processors is much more complex because data locality



in parallel programs depends not only on per-thread reuse,
but also on how simultaneous threads’ memory references in-
teract. Many thread interactions can occur across different
types of caches. For instance, inter-thread memory reference
interleaving leads to interference in shared caches. In addi-
tion, data sharing leads to replication and communication
across private caches.

Recent research has tried to account for these thread in-
teractions to enable RD analysis for multicore processors.
A key innovation is the introduction of new locality pro-
files that quantify thread interactions’ impact on locality
in shared and private caches. Concurrent reuse distance
(CRD) profiles [4, 9, 16, 15, 19, 20] quantify reuse across
thread-interleaved memory reference streams, and account
for interactions in shared caches. Private-stack reuse dis-
tance (PRD) profiles [16, 15, 20] quantify reuse within per-
thread memory reference streams under invalidation-based
coherence, and account for interactions in private caches.

Much like RD profiles for uniprocessors, CRD and PRD
profiles can accelerate cache capacity scaling analysis for
multicore CPUs. But the leverage does not end there. Re-
cent research has also investigated profile prediction tech-
niques. In particular, CRD and PRD profiles can be pre-
dicted across different core counts by analyzing and account-
ing for the effects of increased memory interleaving [4, 9,
19, 20]. Locality profiles can also be predicted for differ-
ent problem sizes. Early techniques worked for RD profiles
and uniprocessors only [22], but recent research has applied
similar techniques to CRD and PRD profiles [19, 20].

One limitation of these techniques is their sensitivity to
memory interleaving: both CRD and PRD are defined only
for a given interleaving of threads’ memory reference streams.
This has two repercussions. First, because memory inter-
leaving depends on timing, CRD and PRD profiles are archi-
tecture dependent. This can complicate cache scaling analy-
sis from a single pair of CRD/PRD profiles since the profiles
may not accurately reflect locality for the predicted caches
if per-thread timing changes substantially. And second, in-
terleaving sensitivity also complicates profile prediction. As
core count or problem size scale, it is unclear how scaled
memory reference streams interleave. Composition tech-
niques for predicting core count scaling [4, 9] analyze traces
and consider all possible interleavings of the scaled reference
streams. Unfortunately, this approach is intractable for even
modest machine and problem sizes, let alone LCMPs.

A silver lining for multicore RD analysis is that interleav-
ing sensitivity is minor for certain types of parallel programs.
Parallel programs express either task-based or loop-based par-
allelism. In task-based parallel programs, threads execute
dissimilar code, giving rise to irregular memory interleavings
which tend to exacerbate interleaving-related problems. In
loop-based parallel programs, however, simultaneous threads
execute similar code–i.e., from the same parallel loop–so
they exhibit similar locality characteristics. Such symmetric
threads produce regular memory interleavings which tend to
ameliorate interleaving-related problems.

In particular, research has shown symmetric threads speed-
up or slow down by similar amounts as cache size changes.
So, CRD and PRD profiles are fairly stable across differ-
ent cache capacities, permitting them to make very accurate
cache performance predictions [9, 20]. Moreover, while CRD
and PRD profiles change across core count and problem size,
they do so in a systematic fashion when threads are symmet-

ric. This permits scaled profiles to be predicted with high
accuracy using extremely simple prediction algorithms [19,
20]. Hence, for parallel programs with symmetric threads,
state-of-the-art RD analysis is capable of performing sophis-
ticated and accurate scaling analyses.

While significant research has investigated RD analysis
for multicores, existing work has focused on developing the
analysis techniques. Far less research has applied the tech-
niques to actually study memory behavior. In this paper,
we use RD analysis to investigate the scalability of multi-
core cache hierarchies, focusing on LCMP-sized processors
and problems. An important thrust of our work is to explore
scaling beyond what is possible to simulate, thus providing
insights that would be impossible to obtain via traditional
simulation-based methodologies. To our knowledge, this is
the first-ever scalability study using RD analysis.

Our work proceeds in several parts, making many contri-
butions along the way. First, we present a framework for rea-
soning about multicore scaling based on previous RD anal-
ysis work. This framework uses CRD and PRD profiles to
quantify locality degradation due to core count scaling, and
to break down the overall locality impact into interference-
based and sharing-based components. Two metrics, Ccore

and Cshare [20], are presented that identify the cache capac-
ities over which these components occur. We also propose
a new profile, PRDCl , which breaks down the amount of
sharing-based locality degradation that cluster caches can
alleviate. Then, we present reference groups [22] for predict-
ing the locality profiles of core count and problem scaled
configurations.

Second, we apply our framework to study the locality
degradation due to core count scaling. This initial study
considers configurations small enough to be profiled: CPUs
with 256 cores running problems that complete in 10s of
billions of instructions. Across 16 SPLASH2 and PARSEC
benchmarks, we find interference-based locality degradation
is much more significant than sharing-based locality degra-
dation. Due to the small problem sizes, the former is con-
fined to small capacities, so small shared caches can contain
this locality impact. Sharing-based locality degradation is
suite dependent, with some SPLASH2 programs exhibiting
coarse-grain sharing and the remaining programs exhibit-
ing fine-grain sharing. On average, sharing-induced locality
degradation is noticeable starting at 13.7 MB on average.

Third, we also use our framework to study the scaling of
cache capacity and cluster size to compensate for the effects
of core count scaling–in particular, to match the MPKI ob-
served on a 1-core CPU. We find the rate of capacity scaling
needed for shared caches is much smaller than for private
caches due to the limited impact of interference-based local-
ity degradation. For the baseline problem sizes, constant-
MPKI scaling at 256 cores is always achievable within 256
MB of on-chip cache.

Finally, we use profile prediction to study input problems
that complete in 100s of trillions of instructions, and CPUs
with up to 1024 cores. We find problem scaling increases the
capacity across which interference-based locality degrada-
tion occurs for many benchmarks. This increases the shared
cache scaling needed to maintain constant MPKI. For our
largest problems, only 3 benchmarks achieve constant-MPKI
scaling within 256 MB of shared cache; for private caches, no
benchmarks can achieve constant-MPKI scaling within 256
MB. Cluster caches can help bridge the gap between private
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Figure 1: Example 3-level multicore cache hierar-
chies.
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Figure 2: Two interleaved memory reference
streams, illustrating different thread interactions.

and shared caches, but they do not change the poor scaling
behavior that larger problems exhibit fundamentally.

The rest of this paper is organized as follows. Section 2
reviews and extends previous multicore RD analyses, estab-
lishing a framework for analyzing multicore memory per-
formance scaling. Next, Section 3 applies the framework
to investigate core count scaling on baseline configurations.
Then, Section 4 investigates how problem scaling and contin-
ued core count scaling affects the results. Finally, Sections 5
and 6 discuss related work and conclusions.

2. MULTICORE SCALING FRAMEWORK
In the past, RD profiles have been used to analyze cache

capacity scaling for uniprocessors. An RD profile is a his-
togram of RD values for all memory references in a sequen-
tial program, where each RD value measures the number of
unique memory blocks referenced since the last reference to
the same data block. Because a cache of capacity C can sat-
isfy references with RD < C (assuming LRU management),
the cache-miss count is the sum of all reference counts in an
RD profile above the RD value for capacity C.

This section discusses CRD, PRD, and other profiles which
extend this basic notion of reuse distance to handle multi-
core CPUs (Section 2.1). Then, we show how these profiles
breakdown different sources of locality degradation, indicat-
ing how effective different cache scaling techniques will be
(Section 2.2). Lastly, we discuss the impact of core count
and problem scaling on the locality profiles (Section 2.3).

2.1 Locality Profiles

2.1.1 CRD and PRD.

Multicore CPUs often contain shared and private caches.
For example, the solid lines in Figure 1 illustrate a CPU
consisting of two levels of private cache backed by a shared
L3 cache. Threads interact differently in each type of cache,
requiring separate locality profiles.

CRD profiles report locality for thread-interleaved mem-
ory reference streams, thus capturing interference in shared
caches. CRD profiles can be measured by applying the in-
terleaved stream on a single (global) LRU stack [9, 16, 15,
19, 20]. For example, Figure 2 illustrates the interleaving
of 2 cores’ memory references accessing 8 memory blocks,
A–H . Figure 3(a) shows the state of the global LRU stack
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Figure 3: LRU stacks showing (a) dilation and over-
lap for CRD, (b) scaling, replication, and (c) holes
for PRD.

when core C1 re-references A at t = 10. C1’s reuse of A ex-
hibits an intra-thread RD = 4, but the CRD which accounts
for interleaving is 7. In this case, CRD > RD because some
of C2’s interleaving references (F–H) are distinct from C1’s
references, causing dilation of intra-thread reuse distance.

In many parallel programs, threads share data which off-
sets dilation in two ways. First, it introduces overlapping
references. For example, in Figure 2, while C2’s reference to
C interleaves with C1’s reuse of A, this doesn’t increase A’s
CRD because C1 already references C in the reuse interval.
Second, sharing also introduces intercepts. For example, if
C2 references A instead of C at t = 6 in Figure 2, then C1’s
reuse of A has CRD = 3, so CRD is actually less than RD.

PRD profiles report locality across per-thread memory ref-
erence streams that access coherent private caches. PRD
profiles can be measured by applying threads’ references on
private LRU stacks that are kept coherent. Without writes,
the private stacks do not interact. For example, Figure 3(b)
shows the PRD stacks corresponding to Figure 3(a) assum-
ing all references are reads. For C1’s reuse of A, PRD =
RD = 4. Note, however, the multiple private stacks still
contribute to increased cache capacity. (Here, the capacity
needed to satisfy PRD = 4 is 10, assuming 2 caches with 5
cache blocks each). To capture this effect, we compute the
scaled PRD (sPRD) which equals T ×PRD, where T is the
number of threads. Hence, for C1’s reuse of A, sPRD = 8.

In PRD profiles, read sharing causes replication, increas-
ing overall capacity pressure. Figure 3(b) shows duplication
of C in the private stacks. Because PRD scaling aggre-
gates private LRU stacks, replication effects are automat-
ically captured in sPRD profiles. In contrast, write sharing
causes invalidation. For example, if C2’s reference to C is
a write instead of a read, then invalidation would occur in
C1’s stack, as shown in Figure 3(c). To prevent invalidations
from promoting blocks further down the LRU stack, invali-
dated blocks become holes rather than being removed from
the stack [16]. Holes are unaffected by references to blocks
above the hole, but a reference to a block below the hole
moves the hole to where the referenced block was found.
For example, if C1 were to reference B in Figure 3(c), D

would be pushed down and the hole would move to depth 3,
preserving A’s stack depth.

2.1.2 PRDCl .

CRD and PRD profiles address the basic shared and pri-
vate caches in muticore processors. Multicores may also
employ cluster caches, especially when scaling to LCMPs.
These are hybrid caches in which the cores from a cluster
access a common shared cache, but all of the per-cluster
caches are treated as private caches requiring coherence. For
example, Figure 1’s dotted lines suggest pair-wise clustered



Figure 4: CMC as a function of cache capacity com-
puted from the RD, CRD, and PRD profiles for the
FFT benchmark.

L2s, and two clustered L3s each shared by half the CPU.
We assume all clusters in a CPU contain the same number
of cores, Cl (the cluster size), which always evenly divides
P , the total number of cores.

The locality profile for a group of clustered caches is the
PRD profile acquired using P

Cl

private stacks in which each

private stack’s memory reference stream is formed by in-
terleaving the streams from the Cl cores belonging to the
same cluster. We call the locality profile acquired in this
fashion PRDCl (sPRDCl). Notice, the Cl parameter defines
a family of caches in which private and shared caches are
the degenerate cases, Cl = 1 and P , respectively. In other
words, PRD = PRD1 and CRD = PRDP .

2.2 Locality Degradation
RD analysis can quantify the magnitude and source of

locality degradation due to core count scaling. Figure 4 il-
lustrates the insights. We plot the cache-miss count (CMC)
profiles corresponding to the CRD and sPRD profiles for
FFT from SPLASH2 [18] running on a 256-core CPU; the
CMC profile for FFT’s RD profile (1-core case) is also plot-
ted. Each CMC profile reports the cache misses predicted
by its corresponding locality profile as a function of reuse
distance (e.g., CMC[i] =

∑
∞

j=i
CRD[j] for the CRD pro-

file). Along the X-axis, reuse distance is plotted in terms of
capacity; along the Y-axis, CMC is plotted on a log scale.

As Figure 4 shows, scaling core count shifts the RD pro-
file to larger capacities, creating gaps that represent local-
ity degradation. In particular, the gap between the CRD
and RD profiles quantifies the cache-miss increase for shared
caches. This quantifies the impact of destructive interference
from interleaving memory references to non-overlapping data.

The gap between the sPRD and RD profiles in Figure 4
quantifies the cache-miss increase for private caches. This
quantifies the impact of PRD scaling, which includes the ac-
cumulation of both per-thread non-overlapping data as well
as shared data, i.e. replication, and the impact of holes cre-
ated by write invalidations. Previous work has shown that
for symmetric threads, PRD scaling of non-overlapping data
has an identical locality impact as memory interleaving in-
terference in shared caches [19, 20]. So, in the absence of
sharing effects–replication and invalidation–CRD and sPRD
profiles are coincident. This also implies sPRD profiles are
always above or equal to CRD profiles, and any gap between
the two quantifies the extra misses due to replicas and in-
validations.

Finally, since clustered caches are hybrids, with private
and shared caches as degenerate cases, sPRDCl profiles lie
in between sPRD and CRD profiles, starting from sPRD and
moving towards CRD as Cl increases from 1 to P . (These
profiles have been omitted from Figure 4 for clarity). This

group of sPRDCl profiles shows the benefit of increasing
cluster size to reduce inter-cluster replicas and invalidations.

2.2.1 Scaling Capacity vs. Clustering.

Figure 4 defines two types of locality degradation: interfer-
ence-based (CRD-RD gap) and sharing-based (sPRD-CRD
gap). Breaking down different types of locality degradation
informs architects on how effective different cache scaling
techniques will be. In both cases, scaling cache capacity
can improve cache performance. This is because both CRD
and sPRD profiles decrease monotonically along the X-axis.
However, for sharing-based locality degradation, scaling clus-
ter size can also improve cache performance. This reduces
replicas and invalidations along the sPRD-CRD gap at a
given cache capacity.

In addition to breaking down interference and sharing,
Figure 4 also shows across which cache capacities each type
of locality degradation occurs. This informs architects on
the range of cache sizes, and hence the caching levels, where
capacity and cluster size scaling will be effective.

Interference-based degradation occurs below some capac-
ity, called Ccore [19, 20]. For example, Figure 4 shows the
CRD-RD gap narrows at Ccore = 10 MB, and eventually
closes shortly thereafter. One reason for this is paralleliza-
tion scope in programs is limited, e.g. to a single parallel
loop. Because parallel regions typically access less data than
a program’s total memory footprint, the amount of destruc-
tive interference is also limited. Essentially, Ccore quanti-
fies a program’s “parallel working set size.” Although not
the case in Figure 4, the CRD-RD gap may not completely
close in some programs. In these cases, the CRD-RD gap
still becomes narrow, so Ccore can be defined where the gap
is near its minimum [20].

Sharing-based degradation occurs beyond some capacity,
called Cshare [19, 20]. For example, Figure 4 shows the
sPRD-CRD gap opens at Cshare = 58 MB. The reason for
this is certain parallelization schemes, such as blocking, limit
the minimum sharing distance. Essentially, Cshare quan-
tifies the resulting “granularity of sharing” that a parallel
program exhibits.

2.3 Core Count and Problem Scaling
Figure 4 shows the analysis at fixed core count and prob-

lem size. Our multicore scaling framework can also ana-
lyze core count and problem scaling effects. This is done by
comparing CRD/PRD profiles at different configurations to
identify trends.

Core count scaling usually increases both interference and
sharing. The former shifts the leading edge of CRD and
sPRD profiles towards higher cache capacities. For CRD
profiles, this increases CMC in the interference region, and
also increases Ccore. But beyond Ccore, the CRD-RD gap
remains small or completely closed due to the limited scope
of interference. Increased sharing raises the height of the
“horizontal” portion of sPRD profiles. In some applications,
this can cause Cshare to shift towards smaller cache sizes.

Problem scaling more universally degrades locality. It in-
creases the height of CRD and sPRD profiles since the num-
ber of memory references scales with run time. In data-
parallel programs, problem scaling also increases memory
footprint size. This shifts most of CRD/sPRD profiles to
larger cache sizes, often increasing Ccore and/or Cshare.

Previous research has shown profile shift can be highly



Benchmarks Profiled Problems Instruction Count (in millions) Interference Region
S1/S2 S1 S2 ∆Mm ∆Ma MPKI Ccore

fft 220/222 elements 598.2 2571.8 11.8 3.6 10.8 10.0MB
lu 10242/20482 elements 2979.9 23815.9 128.7 28.0 49.7 640KB
radix 222/224 keys 784.4 3137.4 10.4 3.0 13.0 14.0MB
barnes 217/219 particles 4470.1 19305.7 189.3 12.7 27.6 6.5MB
fmm 217/219 particles 4090.1 16497.5 42.6 4.4 7.6 8.8MB
ocean 5142/10262 grid 417.3 1623.6 12.6 5.9 110.6 256KB
water 253/403 molecules 497.5 1862.3 105.0 15.1 45.8 2.4MB
kmeans 220/222 objects, 18 features 2666.8 10674.7 623.9 149.9 49.2 384KB
blackscholes 220/222 options 989.4 3872.3 197.4 56.7 87.3 128KB
bodytrack B 4,8k/B 261,16k particles 5262.0 10462.9 59.4 10.1 14.5 4.6MB
canneal 400000/2500000.net 9.1 10.0 3.4 2.3 127.6 8KB
fluidanimate in 300k/500k.fluid 2311.0 3729.0 312.8 42.4 39.8 2.0MB
raytrace 1920x1080/3840x2160 pixels 2834.6 7402.2 689.7 71.9 29.0 4.0MB
swaptions 216/218 swaptions 1263.9 5055.8 107.6 19.2 56.2 1.4MB
streamcluster 216/218 data points 6351.0 26656.3 13.7 6.7 74.5 128KB
vips 2336x2336/2662x5500 pixels 11953.8 33500.4 708.0 362.0 1.3 85.6MB
Average 201.0 49.6 46.5 8.8MB

Benchmark Predicted Problems Instruction Count (in billions)
S3/S4/S5 S3 S4 S5

ALL - 60 3600 604800

Table 1: Parallel benchmarks, problems S1 and S2 and their instruction counts (in millions), and charac-
terization of the interference-based locality degradation region. The last row reports instruction counts for
predicted problems S3 – S5 (in billions).

systematic, especially for programs with symmetric threads.
In this case, core count scaling increases interleaving from
threads with almost identical locality characteristics. This
causes both dilation of intra-thread RD in the interference
region and replication in the sharing region to occur sys-
tematically [19, 20]. Also, problem scaling expands compu-
tation structures (e.g., loops) and data structures systemat-
ically [22]. The net effect is profile shift due to core count
and problem scaling preserves the shape of CRD and sPRD
profiles, making the shift highly predictable.

Zhong proposed reference groups [22] to predict shape-
preserving profile shift. The idea is to “diff” two profiles,
aligning groups of references that “correspond” across the
shift and measuring their shift rates. Then, scaled shift
rates are applied to each reference group to form scaled-
up profiles. Individual reference groups are allowed to use
different shift rates, so the technique can track non-uniform
shift. Zhong originally predicted RD profiles across prob-
lem scaling. Our own previous work [19, 20] extended ref-
erence groups to predict CRD and sPRD profiles across
core count scaling, and applied the technique for predict-
ing CRD/sPRD across problem scaling. Results show the
technique is very accurate.

3. BASELINE SCALING RESULTS
This section uses the framework defined in Section 2 to

measure the locality impact of scaling core count on sev-
eral parallel benchmarks assuming a baseline configuration.
Then, we study how the cache hierarchy must scale in order
to address the locality impact.

3.1 Experimental Methodology
We implemented locality profiling within the Intel PIN

tool [11]. We modified PIN to maintain a global LRU stack
to acquire CRD profiles and coherent private LRU stacks to
acquire PRD profiles following the techniques discussed in
Section 2.1. Our coherent private LRU stacks are also used
to acquire PRDCl profiles. In this case, we group Cl memory
reference streams at a time, interleaving the streams from

each group and applying the per-cluster interleaved streams
on the private LRU stacks. From the measured PRD and
PRDCl profiles, we also derive sPRD and sPRDCl profiles.
Finally, we implemented single-core RD profiling in PIN as
well. We assume 64-byte memory blocks in all LRU stacks.

Our PIN tool follows McCurdy’s method [12] which per-
forms functional execution only, context switching threads
after every memory reference. This interleaves threads’ mem-
ory references uniformly in time. Studies have shown that
for symmetric threads, this approach yields locality profiles
that accurately reflect locality on real CPUs [9, 20].

Using PIN, we profiled 16 parallel benchmarks across 2 dif-
ferent problem sizes. Table 1 lists the benchmarks: the first
7 are from SPLASH2 [18], kmeans is from MineBench [13],
and the last 8 are from PARSEC [2]. The 2nd column in
Table 1 specifies the 2 profiled problem sizes, S1 and S2,
and the next 2 columns in Table 1 specify the number of
instructions executed by each input problem (assuming se-
quential runs). For each benchmark and problem size, we
acquired the RD (1-core) profile, and the CRD, sPRD, and
sPRDCl profiles for 128 and 256 cores. For sPRDCl profiles,
we profiled cluster sizes of 4, 8, and 16 cores. Because re-
sults across cluster sizes are similar, we only present detailed
results for the sPRD8 profiles.

In addition to profiling runs, we also used reference groups,
as described in Section 2.3, to predict additional configura-
tions. Section 4 will discuss our prediction experiments.

3.2 Locality Impact
Figure 5 presents our baseline results for core count scaling

across all 16 benchmarks. In Figure 5, we plot the misses
per 1000 instructions (MPKI) associated with the RD, CRD,
and sPRD profiles for each benchmark. (Each graph is in
exactly the same format as Figure 4 except CMC values are
normalized by InstructionCount

1000
). We plot MPKI rather than

CMC because MPKI better reflects performance. All of the
multicore locality profiles assume S2 running on 256 cores,
the largest problem and machine configuration we profiled
on PIN. The RD profiles assume S2 running on 1 core.
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Figure 5: 256-core CRD and sPRD profiles and RD profiles for the S2 problem showing interference and
sharing regions in our benchmarks.



Benchmarks Sharing Region
∆Mm ∆Ma MPKI Cshare

fft 3.6 2.3 2.4 57.8MB
lu 129.7 90.6 0.1 8KB
radix 3.5 1.9 2.8 154.3MB
barnes 22.0 3.8 0.1 64KB
fmm 12.5 2.2 0.3 16KB
ocean 2.0 1.7 3.6 7MB
water 3.2 1.8 0.5 16KB
kmeans 23.5 1.1 0.5 256KB
blackscholes 101.2 1.3 0.4 8KB
bodytrack 692.5 69.5 0.1 256B
canneal 7.6 1.2 20.7 1KB
fluidanimate 4.1 3.5 0.3 8KB
raytrace 30.3 29.9 0.1 32KB
swaptions 6.9 4.3 2.2 64KB
streamcluster 657.4 136.2 1.6 128B
vips 21.4 13.4 0.02 2KB
Average 107.6 22.8 2.2 13.7MB

Table 2: Characterization of the sharing-based lo-
cality degradation region.

Notice, all graphs in Figure 5 exhibit the same locality be-
haviors described in Section 2.2. There is always a CRD-RD
gap at small RD values that eventually (or nearly) closes by
some capacity, Ccore. Also, CRD and sPRD profiles are co-
incident initially, and then at some capacity, Cshare, a gap
opens. While the magnitude of these locality degradations
and the capacities across which they occur vary, all bench-
marks exhibit interference-based and sharing-based degrada-
tion regions. Given the diverse nature of our benchmarks,
this suggests that interference- and sharing-based locality
impact along with their demarcation at Ccore and Cshare

are fairly general notions, and can be used to reason about
multicore scaling across many different parallel programs.

To better understand the scaling impact, we measure dif-
ferent features on the profiles, as indicated by the arrows
in Figure 5, and report results in the columns labeled “In-
terference Region” and “Sharing Region” in Tables 1 and 2,
respectively. In particular, we measure the ratio of the CRD
and RD profiles and the sPRD and CRD profiles, quantify-
ing the locality degradation in the interference and sharing
regions, respectively. In Tables 1 and 2, we report both the
maximum ratio, ∆Mm (indicated by the double-headed ar-
rows in Figure 5), as well as the average across each region,
∆Ma. We also report the average 1-core MPKI over which
the interference and sharing regions span. Lastly, we report
Ccore and Cshare (solid and dashed single-headed arrows,
respectively, in Figure 5).

As Table 1 shows, the cache-miss increase in the interfer-
ence region due to scaling from 1 to 256 cores is substantial.
The average increase within the region, ∆Ma is between
2.3× and 362.0×. Across all 16 benchmarks, it is 49.6×.
The maximum increase, ∆Mm, is > 100× in 9 benchmarks,
and is > 10× in all but one benchmark. Moreover, the inter-
ference region spans large MPKI values. As Table 1 shows,
the MPKI in the interference region is > 10.0 in all but two
benchmarks. So, the large locality degradation will likely
impact overall CPU performance significantly.

As Table 2 shows, the cache-miss increase in the shar-
ing region due to scaling from 1 to 256 cores can be large,
but not as consistently as in the interference region. The
∆Ma within the region is between 1.1× and 136.2×. In 5 of
the benchmarks, there are double-digit (> 10×) increases,
but in the remaining 11 benchmarks, increases are much

more modest. Averaged across all 16 benchmarks, ∆Ma is
22.8×. Similar behavior is observed for ∆Mm. Also, com-
pared to the interference region, the sharing region occurs
across much smaller MPKI values. In 10 benchmarks, the
MPKI is ≤ 0.5, and on average it’s only 2.2. So, even in
those benchmarks where cache-miss increase is large, there
still may not be a significant impact on overall performance.
In Figure 5, we see locality degradation due to sharing rises
to non-trivial MPKI for fft, lu, radix, raytrace, swaptions,
and streamcluster. It also has an impact in blackscholes,
kmeans, bodytrack, and canneal, but only for a very limited
range of cache capacities. In the remaining cases, sharing
will not have a big impact on overall CPU performance.

Next, Tables 1 and 2 also report where different locality
degradation regions occur. The last column in Table 1 shows
that except for vips, Ccore is modest or small. In most cases,
Ccore ≤ 14MB. So, for the profiles in Figure 5, interference-
based locality degradation is confined to small caches–i.e.,
our benchmarks’ parallel working sets fit on-chip (at least for
S2). In vips, scaling to 256 cores results in Ccore = 86MB.

The last column in Table 2 shows Cshare is somewhat suite
dependent. For a few SPLASH2 benchmarks (fft, radix, and
ocean), Cshare is large, between 7–155MB. But for kmeans
and the entire PARSEC suite, Cshare is always small, <

1MB. In other words, SPLASH2 benchmarks can exhibit
coarse-grain sharing, whereas PARSEC benchmarks tend to
exhibit finer-grained sharing. Granted, several SPLASH2
benchmarks in Table 2 have small Cshare too, but Section 4
will show the suite-dependent nature of sharing granularity
becomes more pronounced with problem scaling.

3.3 Cache Hierarchy Scaling
Computer architects can scale the cache hierarchy to ad-

dress the locality impact from core count scaling, which we
measured in Section 3.2. An important question is can cache
capacity and/or cluster size scaling compensate for the ob-
served locality degradation? And if so, how much scaling is
needed, and why? As discussed in Section 2.2, our scaling
framework can help answer these questions.

3.3.1 Cache Capacity.

We first quantify how much cache size should be scaled.
In particular, we measure the increase in capacity needed for
both shared and private caches to achieve an MPKI on our
baseline 256-core CPU that is equal to a particular MPKI
value on a 1-core CPU. This constant-MPKI scaling factor
can be measured in Figure 5 by drawing a horizontal line
at a particular MPKI, and computing the ratio of the line’s
X-intercept at the CRD or sPRD profile to the X-intercept
at the RD profile. Since this scaling factor varies across
different 1-core MPKI values, we measure it for all 1-core
MPKI–or equivalently, across all 1-core cache sizes.

Ideally, under constant-MPKI scaling, per-thread perfor-
mance is constant with respect to core count, yielding linear
speedup. In actuality, constant-MPKI scaling will achieve
sub-linear speedup since on-chip communication latency in-
creases with core count. In addition, memory bandwidth
consumption will also increase with core count, further re-
ducing speedup if contention occurs. While our framework
can analyze larger scaling factors, for simplicity, we focus on
constant MPKI.

Figure 6(a) presents our analysis for shared caches. We
plot the cache capacity scaling factor needed to maintain



0.25

0.5

1

2

4

8

16

32

64

128

256

512

2
5
6
K
B

2
M
B

5
M
B

8
M
B

1
1
M
B

1
4
M
B

1
7
M
B

2
0
M
B

2
3
M
B

2
6
M
B

2
9
M
B

3
2
M
B

3
5
M
B

3
8
M
B

4
1
M
B

4
4
M
B

4
7
M
B

5
0
M
B

5
3
M
B

5
6
M
B

5
9
M
B

6
2
M
B

1-core Cache Capacity

S
ca

li
n

g
 F

a
ct

o
r

(a) Shared Cache

0.25

0.5

1

2

4

8

16

32

64

128

256

512

2
5
6
K
B

2
M
B

5
M
B

8
M
B

1
1
M
B

1
4
M
B

1
7
M
B

2
0
M
B

2
3
M
B

2
6
M
B

2
9
M
B

3
2
M
B

3
5
M
B

3
8
M
B

4
1
M
B

4
4
M
B

4
7
M
B

5
0
M
B

5
3
M
B

5
6
M
B

5
9
M
B

6
2
M
B

1-core Cache Capacity

S
ca

li
n

g
 F

a
ct

o
r

(b) Private Cache
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(c) 8-Core Cluster Cache

Figure 6: Constant-MPKI cache capacity scaling factor as a function of 1-core cache size at 256 cores and
the S2 problem for (a) shared, (b) private, and (c) 8-core cluster caches.

constant MPKI (when scaling from 1–256 cores) as a func-
tion of single-core cache size for all 16 benchmarks running
the S2 problem. Figure 6(a) shows a large scaling factor
is needed at small cache sizes: between 32× and 128× for
most benchmarks. For small caches, dilation-based inter-
thread interference is significant, causing CRD profiles to
shift by large amounts relative to RD profiles (see Figure 5).
So, a large capacity increase is needed to compensate for
this large locality degradation.

However, Figure 6(a) also shows the capacity scaling fac-
tors decrease rapidly for most benchmarks, eventually reach-
ing 1.0. This is related to Ccore. At a program’s Ccore, the
amount of interference-based locality degradation reduces–
i.e. the CRD-RD gap narrows–which can reduce the shared
cache size needed to maintain constant MPKI. In programs
where the CRD and RD profiles merge completely beyond
Ccore, multicore and single-core CPUs exhibit the same lo-
cality past the merge point, so no cache capacity scaling is
needed (scaling factor = 1.0). From Table 1, we see Ccore

is usually small at S2, resulting in a small 1.0-intercept–by
40MB for most benchmarks in Figure 6(a).

Recall from Section 2.2.1 that the CRD-RD gap may never
close completely. In these benchmarks, the CRD profile
“flattens” beyond Ccore (e.g., vips in Figure 5(p)). As the
1-core MPKI continues to drop, shared cache capacity scal-
ing ceases to achieve constant MPKI. This is the reason why
some scaling factors in Figure 6(a) shoot up to ∞.

In Figure 6(a), we also plot constant ((scaling factor) ×

(1-core cache size))–i.e. constant scaled CPU cache size–as a
dotted line. In particular, this dotted line shows cache scal-
ing to 256 MB which is a reasonable on-chip cache capacity
for 256-core chips. Except for the ∞ cases, every scaling
factor at every 1-core cache size falls below this 256 MB
line, showing that sufficient on-chip cache will be available
for constant-MPKI scaling at S2.

Figure 6(b) presents our analysis for private caches. Simi-
lar to Figure 6(a), a large scaling factor is needed to maintain
constant MPKI for small private caches. Because this small-
cache region is below or near most benchmarks’ Cshare,
sPRD profiles are coincident with or very similar to CRD
profiles. Hence, shared and private caches exhibit similar
scaling requirements.

In Figure 6(b), we also see the constant-MPKI scaling fac-
tor for private caches decreases with cache size. However,

unlike Figure 6(a), the rate of decrease for many benchmarks
is not as steep. This is due to Cshare. At cache sizes beyond
a program’s Cshare, sPRD and CRD profiles diverge due to
sharing-induced replication and invalidation effects, requir-
ing greater capacity scaling for private caches compared to
shared caches to match the 1-core MPKI.

In addition, the private-cache scaling factor never reaches
1.0. Whereas CRD profiles eventually (or nearly) merge
with RD profiles, sPRD profiles never merge, again due
to sharing effects. Hence, some capacity scaling is always
needed–between 2×–4× for most benchmarks in Figure 6(b).
Also, sPRD profiles always “flatten” at some capacity be-
yond which further cache size scaling provides no additional
MPKI reduction. Similar to Figure 6(a), this causes some
scaling factors in Figure 6(b) to shoot up to ∞.

Figure 6(b) plots the same constant cache scaling dotted
line from Figure 6(a). Across every benchmark’s range of
constant-MPKI scaling, every scaling factor falls below this
256 MB line. So, there is sufficient on-chip cache to facili-
tate the private-cache constant-MPKI scaling. Nevertheless,
these results demonstrate that private caches require signif-
icantly larger scaling factors compared to shared caches.

3.3.2 Cluster Size.

We now perform our constant-MPKI scaling factor anal-
ysis for cluster caches. Figure 6(c) shows our analysis as-
suming 8 cores per cluster. (This is the same as Figure 6(b)
except the analysis is performed on sPRD8 profiles instead
of sPRD profiles). As in Figure 6(b), constant-MPKI scaling
factors are large for small caches, decrease with cache size,
and never reach 1.0.

However, compared to Figure 6(b), cluster caches can
achieve lower scaling factors, between 1×–2×. As pointed
out earlier, at cache sizes beyond a program’s Cshare, sPRD
and CRD profiles diverge. But because cluster caches re-
duce sharing-induced replication and invalidation, the pro-
file for the cluster cache lies in between sPRD and CRD.
Therefore, cluster caches require less capacity scaling than
private caches to match the 1-core MPKI. Moreover, due
to the same Cshare-related effect, the cache capacity where
the scaling factor shoots to ∞ increases in Figure 6(c) be-
cause clustering reduces the MPKI at which sPRDCl profiles
“flatten.” Overall, Figure 6(c) shows that by reducing shar-
ing effects, cluster caches require less capacity than private



(a) Both Ccore and Cshare shift significantly: fft at S3
(radix, ocean, and water are similar)

(b) Ccore and/or Cshare shift moderately: barnes at S3
(fmm, canneal, raytrace, and vips are similar)

Figure 7: 256-core CRD, sPRD and RD profiles
showing problem scaling effects.

caches to maintain constant MPKI, and are scalable across
a larger range of cache sizes.

4. EXTENDED SCALING RESULTS
Section 3 demonstrates our scaling framework for S2 and

256 cores. But on a 256-core CPU, the S2 problem for all our
benchmarks would each run in under 1 second. While speed-
ing up small problems is important, S2 does not represent
the problem sizes that LCMPs are likely to run. Instead,
studying larger problems–as well as larger core counts–is
crucial for understanding actual locality behavior on future
LCMPs. Unfortunately, our PIN tool (let alone a detailed
architectural simulator) cannot run such extended config-
urations. But our scaling framework can study them via
profile prediction.

Using the reference groups technique described in Sec-
tion 2.3, we acquire the same profiles in Figure 5 for 3 larger
problems, S3–S5. The last row in Table 1 reports the num-
ber of instructions for each predicted problem (assuming se-
quential runs). On a single 1 GHz core achieving an ideal
CPI = 1, the S3–S5 problems represent wall-clock times of
1 minute, 1 hour, and 1 week, respectively.1 In addition,
we predicted locality profiles for 1024 cores assuming the S2
problem. (We also predicted the 512-core case, but omit
detailed results because they are similar to the 1024-core
case). When predicting, we use two profiled configurations
to drive profile diffing: S1/S2 for problem size prediction,
and 128/256 cores for core count prediction.

Similar to Section 3, we first quantify locality impact, and
then study cache hierarchy scaling.

4.1 Locality Impact
As discussed in Section 2.3, problem scaling shifts locality

profiles to larger capacities just like core count scaling, which
can degrade locality. For example, Figure 7(a) shows fft’s
predicted locality profile for S3. By comparing against the
corresponding profile for S2 in Figure 5(a), we can see the
impact of increased problem size. For both S2 and S3, the

1Notice, a 1-week sequential run would take under an hour on
256 cores with linear speedup. So, even S5 is not that large.

first “hump” in the locality profiles ends at about the same
capacity, 64KB. Memory references in this initial region ac-
cess data unrelated to input size (e.g., stack variables), so
they do not shift with problem scaling. However, the por-
tions of the profiles beyond the first hump do shift from S2
to S3, stretching regions of higher MPKI across larger cache
capacities. This degrades cache performance across the af-
fected capacities.

To quantify, Figure 8 reports the single-core MPKI at
cache sizes of 16, 64, and 256 MB across our benchmarks. At
each cache size, we show the MPKI for S2–S5 as a stacked
bar, illustrating the cache performance degradation incurred
as problem size is scaled. (Notice, MPKI is plotted on a log
scale). As Figure 8 shows, 12 benchmarks–fft, lu, radix,
barnes, fmm, ocean, water, bodytrack, canneal, fluidani-
mate, streamcluster, and vips–exhibit performance degra-
dation as problem size increases. In most cases, the degra-
dation is significant. For 4 benchmarks–kmeans, blacksc-
holes, raytrace, and swaptions–there is no locality degra-
dation. But overall, locality degradation is the dominant
behavior.

Not only can problem scaling cause cache performance
degradation, it can also shift Ccore and/or Cshare, affect-
ing the extent of locality degradation regions and how much
cache scaling is needed to address performance losses. To il-
lustrate, Figure 7 shows different behaviors across our bench-
marks, and Table 3 reports Ccore and Cshare for S4 and S5.

In some benchmarks, both Ccore and Cshare increase sig-
nificantly with problem size. We find this behavior in fft,
radix, ocean, and water. For example, comparing Figures
7(a) and 5(a) shows both Ccore and Cshare shift in fft by
large amounts when scaling from S2 to S3. For the 4 bench-
marks with this behavior, Ccore and Cshare become very
large. Table 3 shows that by S5, all Ccore and Cshare values
for these benchmarks are > 600MB, and most are > 2GB.
Notice also, these benchmarks are all from the SPLASH2
suite. Under problem scaling, SPLASH2 benchmarks be-
come more coarse-grained, supporting the observation from
Section 3.2 that sharing granularity tends to be coarser in
SPLASH2 and finer in PARSEC.

For other benchmarks, Ccore and Cshare increase, but one
or both of them increases only moderately. We find this
behavior in barnes, fmm, canneal, raytrace, and vips. For
example, comparing Figures 7(b) and 5(d) shows Ccore shifts
moderately in barnes when scaling from S2 to S3 (in this
example, Cshare does not shift at all). For the 5 benchmarks
with this behavior, Ccore usually shifts more than Cshare.
Table 3 shows that except for raytrace, the Cshare for these
benchmarks never exceeds 64KB. Ccore can become more
significant, but is usually < 350MB.

Finally, Ccore and Cshare may not increase at all, or the
increase is small. This occurs in the remaining 7 benchmarks
where there is a much more moderate change in Ccore and
Cshare. For these benchmarks, Table 3 shows that for both
S4 and S5, Ccore is always < 40MB. Cshare reaches 10MB
in one case, but is ≤ 512KB in the other 6 cases.

Compared to problem scaling, continued core count scal-
ing has much less impact on locality. In particular, the pre-
dicted profiles for 512 and 1024 cores are similar to those
in Figure 5. As Table 3 shows, Ccore at 1024 cores in-
creases compared to 256 cores. This is because increased
interleaving causes more inter-thread interference. In con-
trast, Cshare may increase or decrease (Table 3 compared to



Figure 8: Single-core MPKI break down for S2–S5 at different cache capacities.

Benchmarks Ccore Cshare

S4 S5 1024 S4 S5 1024

fft 970M >2G 37M >2G >2G 43M
radix 28M >2G 49M >2G >2G 142M
ocean 18M 1.5G 1M >2G >2G 64K
water 53M 601M 6M 460M 695M 64K
barnes 35M 143M 18M 64K 64K 128K
fmm 65M 739M 33M 32K 32K 64K
canneal 1.1G >2G 16K 1K 1K 1K
raytrace 2M 173M 15M 6M 661M 128K
vips 334M 1.6G 87M 4K 4K 2K
lu 3M 9M 1M 3M 10M 32K
kmeans 1M 12M 2M 128K 256K 256K
blackscholes 512K 12M 1M 8K 8K 8K
bodytrack 3M 38M 7M 32K 512K 256
fluidanimate 4M 29M 4M 16K 32K 8K
swaptions 1M 1M 6M 64K 64K 128K
streamcluster 128K 256K 1M 256 256 256

Table 3: Ccore and Cshare for the S4 and S5 problems
on 256 cores, and the S2 problem on 1024 cores.

Table 2), but the change is relatively small. Overall, there
is little impact on locality. For this reason, our main focus
in the rest of the paper is to analyze problem scaling.

4.2 Cache Hierarchy Scaling
In this section, we re-perform the cache scaling analyses

from Section 3.3 to study the impact of problem scaling and
continued core count scaling on cache hierarchy design.

4.2.1 Cache Capacity.

Figure 9(a) reports the shared cache capacity scaling fac-
tor results for an extended problem size, S5. (In other words,
this graph provides the same analysis for S5 that Figure 6(a)
provides for S2). Qualitatively, Figure 9(a) resembles Fig-
ure 6(a). At small cache capacities, large scaling factors
are needed to maintain constant MPKI. But as cache size
increases, the constant-MPKI scaling factor drops and even-
tually reaches 1.0.

However, Figure 9(a) also shows problem scaling dramat-
ically changes shared cache scaling. In particular, bench-
marks exhibit much larger scaling factors at S5 compared to
S2. Because problem scaling shifts locality profiles, the large
scaling factors visible in Figure 6(a) are “stretched” to the
right, resulting in a much wider range of cache sizes across
which large scaling factors occur in Figure 9(a). Also, 1.0-
intercepts increase significantly in most benchmarks as well.
Recall from Section 3.3.1 that the 1.0-intercept is related to
Ccore. Since many benchmarks’ Ccore increase from S2 to
S5 (as discussed in Section 4.1), so do their 1.0-intercepts.
In fact, most benchmarks’ 1.0-intercepts occur well beyond
the end of the graph in Figure 9(a).

Both the larger scaling factors and extended 1.0-intercepts
under S5 negatively impact shared cache scalability. In Fig-
ure 9(a), only 3 benchmarks (lu, bodytrack, and streamclus-

ter) are contained entirely within the 256 MB dotted line.
Three other benchmarks (blackscholes, kmeans, and swap-
tions) also appear below the dotted line, but quickly shoot
up to ∞ due to the CRD flattening issue described in Sec-
tion 3.3.1. The remaining 10 benchmarks–i.e. those with
large Ccore values in Table 3–have scaling factors well above
the dotted line, and cannot achieve constant-MPKI scaling
within a 256 MB on-chip cache capacity.

Not only does problem scaling negatively impact shared
cache scalability, it also negatively impacts the scalability
of private caches as well. Figure 9(b) reports the capacity
scaling factor results for private caches at S5. Once again,
Figures 9(b) and 6(b) are qualitatively similar. In particular,
Figure 9(b) shows constant-MPKI scaling factors are larger
for private caches compared to shared caches, and they never
reach 1.0. (They also eventually shoot to∞, though for most
benchmarks this happens well beyond the end of the graph
in Figure 9(b)).

Because private caches exhibit the same or worse scaling
factors as shared caches, the benchmarks in Figure 9(a) that
are already above the 256 MB dotted line for a shared cache
are also above the dotted line in Figure 9(b) for a private
cache. Even worse, the benchmarks that are below the 256
MB dotted line in Figure 9(a) move above the dotted line
across most cache capacities in Figure 9(b). These bench-
marks have small Cshare, as shown in Table 3. So, their
sPRD and CRD profiles diverge at small cache sizes, lead-
ing to larger constant-MPKI scaling factors across most/all
private cache capacities. Consequently, except for lu at
small cache sizes, Figure 9(b) shows none of our benchmarks
achieve constant-MPKI scaling for private caches within the
256 MB limit under the S5 problem.

As for continued core count scaling to 1024 cores, due
to the small change in Ccore and Cshare shown in Table 3,
the result for shared caches is qualitatively the same as Fig-
ure 6(a). But there are more sharing-induced invalidations
at 1024 cores, thus many benchmarks’ private-cache scaling
factors shoot to ∞ earlier than in Figure 6(b). (Detailed
results have been omitted to save space).

4.2.2 Cluster Size.

We now consider the predicted PRDCl profiles. Figure 9(c)
presents our analysis for 8-core cluster caches at S5. As dis-
cussed in Section 3.3.2, the effects of clustering–lowering the
scaling factor and increasing the scalable range–are related
to Cshare. For most benchmarks in Table 3, Cshare remains
small at S5. Therefore, there is potential for clustering to
fill the gap between the sPRD and CRD profiles.

Comparing Figures 9(c) and 9(b), we can see there are
scaling factor reductions for many benchmarks. In partic-
ular, clustering enables the same 3 benchmarks from Fig-
ure 9(a) to achieve constant-MPKI scaling within 256 MB
of on-chip cache (lu, bodytrack, and streamcluster). Also,
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(a) Shared Cache
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(b) Private Cache
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(c) 8-Core Cluster Cache

Figure 9: Constant-MPKI cache capacity scaling factor as a function of 1-core cache size at 256 cores and
the S5 problem for (a) shared, (b) private, and (c) 8-core cluster caches.

the benchmarks that shoot up to ∞ generally do so at lager
capacities in Figure 9(c) compared to Figure 9(b). How-
ever, the fact remains that scaling problem size from S2 to
S5 makes many more benchmarks unscalable within 256 MB
of on-chip cache, and clustering does not change this funda-
mental conclusion.

5. RELATED WORK
Our work is related to all of the recent research on RD

analysis for multicore processors. In particular, we employ
CRD profiles explored by Ding [4] as well as PRD profiles
explored by Schuff [16, 15]. We also exploit the properties
of symmetric threads first observed by Jiang [9]. However,
while these prior research efforts focus on developing profil-
ing techniques, we apply them to study scaling. Our work
considers 256-1024 core CPUs and LCMP-sized problems,
whereas prior papers investigate 32 cores at most (usually
4 cores or less), and small problems. We also extend prior
analysis with PRDCl profiles for cluster caches.

This paper is closely related to our own previous work [19,
20], which defined many components of the scaling frame-
work in Section 2. In particular, our previous work observed
that core count scaling for symmetric threads causes system-
atic shift of CRD and PRD profiles, and proposed applying
Zhong’s reference groups [22] to predict the shift. To explain
why profiles shift, we identified interference- and sharing-
based locality degradation, and defined Ccore and Cshare to
mark the capacities across which these regions occur.

Compared to our prior work, this paper studies how mul-
ticore cache hierarchies should scale in order to compensate
for the observed locality degradation. This paper studies
both cache capacity and cluster size scaling to address local-
ity degradation; the prior work did not apply the techniques
for studying cache hierarchies. In addition, this paper uses
profile prediction to study very large problems and 1024-core
CPUs; the prior work focused only on assessing the accuracy
of the profile prediction techniques. This paper also per-
forms a more detailed characterization of the interference-
and sharing-based locality degradation regions, and consid-
ers many more benchmarks.

Chandra [3] and Suh [17] also developed locality mod-
els for multicore processors. However, these papers focus
on multiprogrammed workloads consisting of sequential pro-
grams whereas we focus on multithreaded parallel programs.

RD analysis has also been used to analyze uniprocessor cache
hierarchies [22, 5, 23].

Finally, many studies have tried to characterize multicore
memory behavior using simulation [7, 8, 10, 14]. Although
our study is not as accurate, it explores a much larger por-
tion of the design space, providing more insight into scaling
trends. Moreover, because we can predict scaled configura-
tions, our study can also consider much larger core counts
and problem sizes.

6. CONCLUSION
This paper conducts the first-ever study of multicore cache

hierarchy scalability using RD analysis. We present a power-
ful framework for analyzing parallel program locality based
on existing RD analysis techniques, and apply it to study
multicore CPU scaling. Across 16 SPLASH2 and PAR-
SEC benchmarks, we find interference-based locality degra-
dation is more significant than sharing-based locality degra-
dation. For small input problems typically used to drive ar-
chitectural simulation, interference-based locality degrada-
tion can be fully contained within capacities feasible for on-
chip caches. Sharing-based locality degradation is suite de-
pendent, with some SPLASH2 programs exhibiting coarse-
grain sharing and the remaining benchmarks exhibiting fine-
grain sharing. Given a 256 MB on-chip cache budget, our re-
sults show all of our benchmarks can achieve constant-MPKI
scaling for both shared and private caches when going from
1 to 256 cores. This is due to the small input problem sizes
and their relatively small Ccore values.

For large input problems that are more appropriate for
LCMPs but are impractical to simulate, we find interference-
based locality degradation becomes much more significant,
occurring across a wider range of cache sizes for many bench-
marks. As a result, only 3 benchmarks achieve constant-
MPKI scaling within 256 MB of shared cache, and no bench-
marks can achieve constant-MPKI scaling within 256 MB for
private caches. Cluster caches can help bridge the gap be-
tween private and shared cache scalability, but do not change
the poor scaling behavior that plagues the larger problems.
These results demonstrate the importance of RD analysis
techniques: they can reveal qualitatively different behavior
compared to what traditional simulation of smaller problem
sizes would show.
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