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Abstract

As processors continue to deliver higher levels of
performance and as memory latency tolerance tech-
niques become widespread to address the increasing
cost of accessing memory, memory bandwidth will
emerge as a major performance bottleneck. Rather
than rely solely on wider and faster memories to ad-
dress memory bandwidth shortages, an alternative is
to use existing memory bandwidth more efficiently. A
promising approach is hardware-based selective sub-
blocking [12, 1]. In this technique, hardware predic-
tors track the portions of cache blocks that are ref-
erenced by the processor. On a cache miss, the pre-
dictors are consulted and only previously referenced
portions are fetched into the cache, thus conserving
memory bandwidth.

This paper proposes a software-centric (and hence
more complexity-effective) approch to selective sub-
blocking. We make the key observation that waste-
ful data fetching inside long cache blocks arises due
to certain sparse memory references, and that such
memory references can be identified in the applica-
tion source code. Rather than use hardware pre-
dictors to discover sparse memory reference patterns
from the dynamic memory reference stream, our ap-
proach relies on the programmer or compiler to iden-
tify the sparse memory references statically, and to
use special annotated memory instructions to spec-
ify the amount of spatial reuse associated with such
memory references. At runtime, the size annotations
select the amount of data to fetch on each cache miss,
thus fetching only data that will likely be accessed by
the processor.

Our results show annotated memory instructions
remove between 54% and 71% of cache traffic for 7
applications, reducing more traffic than hardware se-
lective sub-blocking using a 32 Kbyte predictor on all
applications, and reducing as much traffic as hard-

ware selective sub-blocking using an 8 Mbyte pre-
dictor on 5 out of 7 applications. Overall, annotated
memory instructions achieve a 17% performance gain
when used alone, and a 22.3% performance gain
when combined with software prefetching, compared
to a 7.2% performance degradation when prefetching
without annotated memory instructions.

1 Introduction

Several researchers have observed in the past that in-
sufficient memory bandwidth limits performance in
many important applications. For example, Burger
et al [2] report between 11% and 31% of the total
memory stalls observed in several SPEC benchmarks
are due to insufficient memory bandwidth. In addi-
tion, Ding and Kennedy [6] observe several scientific
kernels require between 3.4 and 10.5 times the L2-
memory bus bandwidth provided by the SGI Origin
2000.

Unfortunately, memory bandwidth limitations are
likely to become worse on future high-performance
systems due to two factors. First, increased clock
rates driven by technology improvements and greater
exploitation of ILP will produce processors that con-
sume data at a higher rate. Second, the growing gap
between processor and memory speeds will force ar-
chitects to more aggressively employ memory latency
tolerance techniques, such as prefetching, streaming,
multithreading, and speculative loads. These tech-
niques hide memory latency, but they do not reduce
memory traffic. Consequently, performance gains
achieved through latency tolerance directly increase
memory bandwidth consumption. Without sufficient
memory bandwidth, memory latency tolerance tech-
niques become ineffective.

These trends will pressure future memory systems
to provide increased memory bandwidth in order to
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realize the potential performance gains of faster pro-
cessors and aggressive latency tolerance techniques.
Rather than rely solely on wider and faster mem-
ory systems, an alternative is to use existing memory
resources more efficiently. Caches can be highly in-
efficient in how they utilize memory bandwidth be-
cause they fetch long cache blocks on each cache
miss. While long cache blocks exploit spatial local-
ity, they also wastefully fetch data whenever portions
of a cache block are not referenced prior to eviction.
To tailor the exploitation of spatial locality to appli-
cation reference patterns, researchers have proposed
hardware-based selective sub-blocking [12, 1]. This ap-
proach relies on hardware predictors to track the por-
tions of cache blocks that are referenced by the pro-
cessor. On a cache miss, the predictors are consulted
and only previously referenced (and possibly discon-
tiguous) portions are fetched into the cache, thus con-
serving memory bandwidth.

In this paper, we propose a software-centric ap-
proach to selective sub-blocking. We make the key
observation that wasteful data fetching inside long
cache blocks arises due to certain sparse memory
reference patterns, and that such reference patterns
can be detected statically by examining application
source code. Specifically, we identify three common
memory reference patterns that lead to sparse mem-
ory references: large-stride affine array references,
indexed array references, and pointer-chasing refer-
ences. Our technique relies on the programmer or
compiler to identify these reference patterns, and to
extract spatial reuse information associated with such
references. Through special size-annotated memory
instructions, the software conveys this information to
the hardware, allowing the memory system to fetch
only the data that will be accessed on each cache miss.
Finally, we use a sectored cache to fetch and cache
variable-sized fine-grained data accessed through the
annotated memory instructions, similar to hardware
selective sub-blocking techniques.

Compared to previous selective sub-blocking tech-
niques, our approach uses less hardware, leading to
lower system cost and lower power consumption.
Using hardware to drive selective sub-blocking can
be expensive because predictors must track the se-
lection information for every unique cache-missing
memory block. In contrast, our approach off-loads
the discovery of selection information onto software,
thus eliminating the predictor tables. The savings
can be significant–we show software annotations re-
duce more memory traffic for a 64 Kbyte cache than
a hardware predictor with a 32 Kbyte table, and
achieves similar memory traffic on 5 out of 7 applica-
tions to a hardware predictor with an 8 Mbyte table.

The advantage of the hardware approach, however,
is that it is fully automatic. Furthermore, the hard-
ware approach uses exact runtime information that is
not available statically, and can thus identify the ref-
erenced portions of cache blocks more precisely than
the software approach (but only if sufficiently large
predictors are employed).

This paper makes the following contributions.
First, we present an off-line algorithm for insert-
ing annotated memory instructions to convey spa-
tial reuse information to the hardware. Second, we
propose the hardware necessary to support our an-
notated memory instructions. Finally, we conduct
an experimental evaluation of our technique. Our
results show annotated memory instructions remove
between 54% and 71% of the memory traffic for 7 ap-
plications, comparing favorably to hardware selective
sub-blocking as discussed above. These traffic reduc-
tions lead to a 17% overall performance gain. When
coupled with software prefetching, annotated mem-
ory instructions enable a 22.3% performance gain,
compared to a 7.2% performance degradation when
prefetching without annotated memory instructions.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Then, Sections 3 and 4
present our technique. Section 5 characterizes the
bandwidth reductions our technique achieves, and
Section 6 evaluates its performance gains. Finally,
Section 7 concludes the paper.

2 Related Work

Our technique is based on hardware selective sub-
blocking [12, 1]. In this paper, we compare our tech-
nique against Spatial Footprint Predictors (SFP) [12],
but an almost identical approach was also proposed
independently by Burger, called Sub-Block Prefetch-
ing (SBP) [1]. Another similar approach is the Spa-
tial Locality Detection Table (SLDT) [10]. SLDT is
less flexible than SFP and SBP, dynamically choos-
ing between two power-of-two fetch sizes rather than
fetching arbitrary footprints of (possibly discontigu-
ous) sub-blocks. Similar to these three techniques,
our approach adapts the fetch size using spatial reuse
information observed in the application. However, we
extract spatial reuse information statically from ap-
plication source code, whereas SFP, SBP, and SLDT
discover the information dynamically by monitoring
memory access patterns in hardware.

Prior to SFP, SBP, and SLDT, several researchers
have considered adapting the cache-line and/or fetch
size for regular memory access patterns. Virtual
Cache Lines (VCL) [16] uses a fixed cache block size
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for normal references, and fetches multiple sequential
cache blocks when the compiler detects high spatial
reuse. The Dynamically Variable Line-Size (D-VLS)
cache [9] and stride prefetching cache [7] propose sim-
ilar dynamic fetch sizing techniques, but use hard-
ware to detect the degree of spatial reuse. Finally,
the dual data cache [8] selects between two caches,
also in hardware, tuned for either spatial locality or
temporal locality. These techniques employ line-size
selection algorithms that are designed for affine array
references and are thus targeted to numeric codes.
In comparison, our algorithms handle both irregular
and regular access patterns and thus work for non-
numeric codes as well.

Impulse [3] performs fine-grained address transla-
tion in the memory controller to alter data structure
layout under software control, permitting software to
remap sparse data so that it is stored densely in cache.
Our approach only provides hints to the memory sys-
tem, whereas Impulse requires code transformations
to alias the original and remapped memory locations
whose correctness must be verified. However, our
approach reduces memory bandwidth consumption
only. Impulse improves both memory bandwidth con-
sumption and cache utilization.

Finally, all-software techniques for addressing
memory bandwidth bottlenecks have also been stud-
ied. Ding and Kennedy [6] propose compiler op-
timizations specifically for reducing memory traffic.
Chilimbi et al propose cache-conscious data layout [5]
and field reordering [4] optimizations that increase
data locality for irregular access patterns, and hence
also reduce memory traffic. The advantage of these
techniques is they require no special hardware sup-
port. However, they are applicable only when the
correctness of the code transformations can be guar-
anteed by the compiler or programmer. Since our
approach only provides hints to the memory system,
it can reduce memory traffic even when such code
transformations are not legal or safe.

3 Software-Controlled Memory

Bandwidth

In this section, we present our software approach for
controlling memory bandwidth consumption. First,
Section 3.1 presents an overview. Then, Sections 3.2
and 3.3 describe how to extract spatial locality in-
formation for driving selective data fetching. Finally,
Section 3.4 discusses ISA support.

3.1 Approach

Our approach enables the application to convey infor-
mation about its memory access patterns to the mem-
ory system so that the transfer size on each cache miss
can be customized to match the degree of spatial lo-
cality associated with the missing reference. We tar-
get memory references that are likely to exhibit sparse
memory access patterns. For these memory refer-
ences, the memory system selects a cache miss trans-
fer size smaller than a cache block to avoid fetching
useless data, hence reducing the application’s mem-
ory bandwidth consumption. For all other memory
references, the memory system uses the default cache
block transfer size to exploit spatial locality as nor-
mal.

To provide the application-level information re-
quired by our technique, we perform static analysis
of the source code to identify memory references that
have the potential to access memory sparsely. Our
code analysis looks for three traversal patterns that
frequently exhibit poor spatial reuse: large-stride
affine array traversals, indexed array traversals, and
pointer-chasing traversals. For each memory refer-
ence in one of these traversals, our analysis extracts
a data access size that reflects the degree of spatial
reuse associated with the memory reference.

For each sparse memory reference identified by our
code analysis, we replace the original memory in-
struction at the point in the code where the sparse
memory reference occurs with an annotated memory
instruction that carries a size annotation as part of
its opcode. We assume ISA support that provides
size annotations for load, store, and prefetch instruc-
tions. When an annotated memory instruction suffers
a cache miss at runtime, the size annotation is trans-
mitted along with the cache miss request, causing
only the amount of data specified by the size anno-
tation to be transferred into the cache rather than
transferring an entire cache block.

3.2 Identifying Sparse References

Our code analysis examines loops to identify fre-
quently executed memory references that exhibit
poor spatial reuse. As discussed in Section 3.1, we
look for three types of loops–large-stride affine array,
indexed array, and pointer-chasing loops. C code ex-
amples of these loops appear in Figure 1.

All three loops in Figure 1 have one thing in com-
mon: the memory references executed in adjacent
loop iterations have a high potential to access non-
consecutive memory locations, giving rise to sparse
memory reference patterns. In affine array traversals,
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// a). Affine Array // b). Indexed Array // c). Pointer-Chasing

double A[N], B[N][N]; double A[N], B[N]; struct node {

int i, j; int C[N]; int data;

int S; /* large */ int i; struct node *jump, *next;

for (i=0, j=0; for (i=0; i<N; i++) { } *root, *ptr;

i<N; i+=S, j++) { S3: prefetch(&A[C[i+D]]); for (ptr=root; ptr; ) {

S1: prefetch(&A[i+D]); S4: ... = A[C[i]]; S6: prefetch(ptr->jump);

S2: ... = A[i]; S5: B[C[i]] = ... S7: ... = ptr->data;

S3: ... = B[j][0]; } S8: ptr = ptr->next;

} }

Figure 1: Memory references that exhibit sparse memory access patterns frequently occur in three types of loops:
a). affine array traversal with large stride, b). indexed array traversal, and c). pointer-chasing traversal.

a large stride causes consecutively referenced array el-
ements to be separated by a large distance in memory.
A large stride can occur in two ways. If the loop in-
duction variable is incremented by a large value each
iteration, then using it as an array index results in a
large stride. Alternatively, a loop induction variable
used to index an outer array dimension also results in
a large stride, assuming row-major ordering of array
indices. These two cases are illustrated by statements
S2 and S3, respectively, in Figure 1a.

Indexed array and pointer-chasing traversals ex-
hibit low spatial locality due to irregular memory ad-
dressing. In indexed array traversals, a data array is
accessed using an index provided by another array,
called the “index array.” Statements S4 and S5 in
Figure 1b illustrate indexed array references. Since
the index for the data array is a runtime value, con-
secutive data array references often access random
memory locations. In pointer-chasing traversals, a
loop induction variable traverses a chain of pointer
links, as in statements S7 and S8 of Figure 1c. Log-
ically contiguous link nodes are usually not physi-
cally contiguous in memory. Even if link nodes are
allocated contiguously, frequent insert and delete op-
erations can randomize the logical ordering of link
nodes. Consequently, the pointer accesses through
the induction variable often access non-consecutive
memory locations.

Due to their sparse memory access characteristics,
our analysis selects the memory references associ-
ated with large-stride affine arrays, indexed arrays,
and pointer chain traversals as candidates for our
bandwidth-reduction techniques. All memory refer-
ences participating in these loop traversals are se-
lected. This includes normal loads and stores. It also
includes prefetches if software prefetching has been
instrumented in the loops to provide latency toler-
ance benefits. Statements S1, S3, and S6 in Figure 1
illustrate “sparse prefetches” that would be selected
by our code analysis.

3.3 Computing Transfer Size

To realize the potential bandwidth savings afforded
by sparse memory references, we must determine the
amount of data the memory system should fetch each
time a sparse memory reference misses in the cache.
Proper selection of the cache miss transfer size is cru-
cial. The transfer size should be small to conserve
bandwidth. However, selecting too small a transfer
size may result in lost opportunities to exploit spa-
tial reuse and increased cache misses, offsetting the
gains of conserving memory bandwidth. We use code
analysis of the memory reference patterns to deter-
mine the degree of spatial reuse, and then we select a
transfer size that exploits the detected spatial local-
ity.

Our code analysis computes a cache miss trans-
fer size for each sparse memory reference in the fol-
lowing manner. For each array element or link node
accessed, we examine the number of unique sparse
memory references identified in Section 3.2. If only
one sparse memory reference occurs to each array ele-
ment or link node, we assume there is no spatial reuse
and we set the transfer size equal to the size of the
memory reference itself. The affine array and indexed
array examples in Figures 1a-b fall into this category.
The transfer size for each memory reference in these
two loops should be set to the size of a double floating
point value, which we assume to be 8 bytes.

If, however, each array element or link node is ac-
cessed by multiple unique memory references in each
loop iteration, then we must determine the degree of
spatial reuse that exists between intra-iteration refer-
ences, and select a transfer size that exploits the spa-
tial reuse. This case occurs when an array element
or link node contains a compound structure. For ex-
ample, Figure 2a shows a linked-list traversal loop
from Health, a benchmark in the Olden suite [15],
in which the loop body references two different fields
in the same “List” structure. Because structure ele-
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void removeList(struct List *list,

struct Patent *p;

p = list->patient;
while (p != patient) {

list =  list->forward;
p =  list->patient;

}

}

struct List {
struct Patient *patient;
struct List *back;
struct List *forward;

}

struct Patient *patient) {

size #1 = 12 bytes

size #2 = 4 bytes

patient

back

forward

a). b).

load #1

load #2...

Figure 2: Extracting size information from compound structures. a). Pointer-chasing loop from the Health bench-
mark containing two sparse memory references. b). List node structure declaration and memory layout. Vertical
arrows indicate size information for the sparse memory references.

lw8

lw16

lw32

ld8

ld16

ld32

sw8

sw16

sw32

sd8

sd16

sd32

pref8

pref16

pref32

8 bytes

16 bytes

32 bytes

load
word

load
double

store
word

store
double prefetch

Table 1: Mneumonics for instructions that carry size an-
notations. We assume all combinations of load and store
word, load and store double word, and prefetch instruc-
tions, and 8, 16, and 32 byte annotations.

ments are packed in memory, separate intra-structure
memory references exhibit spatial locality.

To select the transfer size for multiple memory ref-
erences to a compound structure, we consider each
static memory reference in program order. For each
static memory reference, we compute the extent of
the memory region touched by the memory reference
and all other static memory references proceeding it
in program order that access the same structure. The
size of this memory region is the transfer size for the
memory reference. A transfer size computed in this
fashion increases the likelihood that each memory ref-
erence fetches the data needed by subsequent mem-
ory references to the same structure, thus exploiting
spatial locality.

Figure 2b demonstrates our transfer size selection
algorithm on the Health benchmark. As illustrated in
Figure 2a, each “List” structure is referenced twice:
the “patient” field is referenced first, and then the
“forward” field is referenced second, labeled “load
#1” and “load #2,” respectively. (Notice the tem-
poral order of references to each structure is inverted
compared to the order in which the memory refer-
ences appear in the source code.) Figure 2b shows
the definition of the “List” structure, and illustrates
the memory layout of structure elements. We con-

sider the loads in program order. For load #1, we
compute the extent of the memory region bounded
by both load #1 and load #2 since load #2 follows
load #1 in program order. The size of this region
is 12 bytes. For load #2, we compute the extent of
the memory region consisting of load #2 alone since
there are no other accesses to the same structure in
program order. The size of this region is 4 bytes.
Consequently, loads #1 and #2 should use a transfer
size of 12 and 4 bytes, respectively.

3.4 Annotated Memory Instructions

We augment the instruction set with several new
memory instructions to encode the transfer size in-
formation described in Section 3.3. These annotated
memory instructions replace normal memory instruc-
tions at the points in the code where sparse memory
references have been identified, as described in Sec-
tion 3.2. When an annotated memory instruction
executes at runtime, it passes its size annotation to
the memory system, where it is used to reduce the
cache miss fetch size.

Table 1 lists the annotated memory instructions
we assume in our study. To minimize the number of
new instructions, we restrict the type of memory in-
structions that carry size annotations. We have found
in practice that annotating a few memory instruction
types is adequate. In our study, we assume size anno-
tations for load and store word, load and store double
word, and prefetch. Each column of Table 1 corre-
sponds to one of these memory instruction types.

We also limit the size annotations to a power-of-
two value. In our study, we assume 3 different size
annotations: 8, 16, and 32 bytes. Each row of Table 1
corresponds to one of these annotation sizes. Since
the number of size annotations is restricted, we can-
not annotate a memory reference with an arbitrary
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a).  Conventional Cache. b).  Sectored Cache.

Tag D V1 Cache Block1 V3 Cache Block3Tag D V Cache Block V4 Cache Block4V2 Cache Block2

Tag D V1 Cache Block1 V3 Cache Block3 V4 Cache Block4V2 Cache Block2Tag D V Cache Block

..

.
..
.

..

.
..
.

..

.
..
.

..

.

Figure 3: a). A conventional cache provides one tag for each cache block. b). A sectored cache provides one tag for
all the cache blocks in a sector, hence reducing the tag overhead. “V” denotes a valid bit, and “D” denotes a dirty
bit.

size value. Consequently, all transfer sizes computed
using the technique described in Section 3.3 must be
rounded up to the next available power-of-two size
annotation.

4 Hardware Support for Band-

width Reduction

An annotated memory instruction, as described in
Section 3.4, fetches a variable-sized narrow-width
block of data on each cache miss. Furthermore, fine-
grained fetches are intermixed with cache misses from
normal memory instructions that fetch a full cache
block of data. Hardware support is needed to enable
the memory hierarchy to handle multiple fetch sizes.

Previous hardware techniques for adaptively ex-
ploiting spatial locality have addressed this variable
fetch size problem [12, 1, 10]; we adopt a similar
approach. First, we reduce the cache block size to
match the smallest fetch size required by the an-
notated memory instructions. Second, we allow a
software-specified number of contiguous cache blocks
to be fetched on each cache miss. Normal memory
instructions should request a fixed number of cache
blocks whose aggregate size equals the cache block
size of a conventional cache, hence exploiting spatial
locality. Annotated memory instructions should re-
quest the number of cache blocks required to match
the size annotation specified by the instruction op-
code, hence conserving memory bandwidth. This sec-
tion discusses these two hardware issues in more de-
tail.

4.1 Sectored Caches

To exploit the potential bandwidth savings afforded
by sparse memory references, a small cache block is
required. One drawback of small cache blocks is high
tag overhead. Fortunately, the tag overhead of small
cache blocks can be mitigated using a sectored cache,
as is done in [12] and [1]. Compared to a conventional
cache, a sectored cache provides a cache tag for ev-

ery sector, which consists of multiple cache blocks
that are contiguous in the address space, as shown
in Figure 3.1 Each cache block has its own valid bit,
so cache blocks from the same sector can be fetched
independently. Because each tag is shared between
multiple blocks, cache tag overhead is small even
when the cache block size is small. Consequently, sec-
tored caches provide a low-cost implementation of the
small cache blocks required by our annotated memory
instructions.

4.2 Variable Fetch Size

In addition to supporting small cache blocks, the
sectored cache must also support fetching a variable
number of cache blocks on each cache miss, controlled
by software. Figure 4 specifies the actions taken on
a cache miss that implements a software-controlled
variable fetch size.

Normally, a sectored cache fetches a single cache
block on every cache miss. To support our technique,
we should instead choose the number of cache blocks
to fetch based on the opcode of the memory instruc-
tion at the time of the cache miss. Our sectored
cache performs three different actions on a cache miss
depending on the type of cache-missing memory in-
struction, as illustrated in Figures 4a-c. Moreover,
each action is influenced by the type of miss. Sec-
tored caches have two different cache-miss types: a
sector miss occurs when both the requested cache
block and sector are not found in the cache, and a
cache block miss occurs when the requested sector
is present (i.e. a sector hit) but the requested cache
block within the sector is missing.

When a normal memory instruction suffers a cache
miss (Figure 4a), the cache requests an entire sec-
tor of data from the next level of the memory hier-

1Referring to each group of blocks as a sector and individual
blocks as cache blocks is a naming convention used by recent
work in sectored caches [12]. In the past, these have also been
referred to as cache block and sub-blocks, respectively, and the
overall technique as sub-blocking. We choose to use the more
recent terminology in our paper, though there is no general
agreement on terminology.
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sector

Allocate Sector
&

No

Yes

Fetch Sector

Merge

Allocate Sector
&

Merge Cache

Allocate Sector

Sector Block(s)

Fill Sector Fill Cache Block(s)

a).  Normal Memory Instructions b).  Annotated Memory Instructions

Do
hit?

sector

No

Yes

hit?
sector

No

Yes

hit? Nothing

c).  sd8

Fetch Fetch Nothing

except sd8

Annotation Size
Cache Block SizeBlocks

&
Inform Lower Cache

Figure 4: Action taken on a cache miss for a). normal memory instructions, b). annotated memory instructions
except sd8, and c). sd8.

archy. For sector misses, a new sector is also allo-
cated, evicting an existing sector if necessary. When
the requested sector arrives, it is filled into the sec-
tor if the miss was a sector miss. Otherwise, if the
miss was a cache block miss, a “merge” operation is
performed instead. The merge fills only those cache
blocks inside the sector that are invalid. All other
cache blocks from the fetched sector are discarded
to prevent overwriting already present (and possibly
dirty) cache blocks in the sector.

When an annotated memory instruction suffers a
cache miss (Figure 4b), the cache requests the num-
ber of cache blocks specified by the instruction’s size
annotation, or Annotation Size

Cache Block Size . Since we restrict the
annotation size to a power of two, this ratio will itself
be a power of two (assuming cache blocks are a power-
of-two size as well). In the event that the annotation
is smaller than a cache block or larger than a sector,
we fetch a single cache block or sector, respectively.
Also, we align the request to an annotation-sized
boundary (i.e. 8-byte annotations are double-word
aligned, 16-byte annotations are quad-word aligned,
etc.). These simplifying assumptions guarantee that
all fetched cache blocks reside in the same sector.
Eventually, the variable-sized fetch request returns
from the next level of the memory hierarchy, and we
perform a sector fill or merge depending on whether
the cache miss was a sector miss or cache block miss,
as described above.

Finally, there is one exceptional case, shown in Fig-
ure 4c. For annotated store instructions whose store
width matches the size annotation, the store instruc-
tion itself overwrites the entire region specified by
the size annotation. Consequently, there is no need
to fetch data on a cache miss. Notice however, if the
store miss is a sector miss, the cache must allocate a
new sector for the store, which can violate inclusion

if a fetch request is not sent to the next memory hi-
erarchy level. For this case, there is still no need to
fetch data, but the next level of the memory hierar-
chy should be informed of the miss so that inclusion
can be maintained. Amongst the annotated memory
instructions used in our study (see Table 1), sd8 is
the only one for which this exception applies.

5 Cache Performance

Having described our technique in Sections 3 and 4,
we now evaluate its effectiveness. We choose cache
simulation as the starting point for our evaluation
because it permits us to study the behavior of an-
notated memory instructions independent of system
implementation details.

5.1 Evaluation Methodology

Table 2 presents our benchmarks. The first three
make heavy use of indexed arrays. Irreg is an it-
erative PDE solver for computational fluid dynam-
ics problems. Moldyn is abstracted from the non-
bonded force calculation in CHARMM, a molecular
dynamics application. And NBF is abstracted from
the GROMOS molecular dynamics code [17]. The
next two benchmarks are from Olden [15]. Health

simulates the Columbian health care system, and
MST computes a minimum spanning tree. Both
benchmarks traverse linked lists frequently. Finally,
the last two benchmarks are from SPECInt CPU2000.
BZIP2 is a data compression algorithm that per-
forms indexed array accesses, and MCF is an op-
timization solver that traverses a highly irregular
linked data structure.

Using these benchmarks, we perform a series of

7



Program Input Sparse Refs Init Warm Data

Irreg 144K nodes, 11 sweeps Indexed array 993.1 5.2 (3.9) 52.8 (13.2)
Moldyn 131K mols, 11 sweeps Indexed array 761.5 6.7 (3.3) 66.7 (10.1)
NBF 144K mols, 11 sweeps Indexed array 49.6 4.2 (2.1) 41.5 (11.3)
Health 5 levels, 106 itrs Ptr-chasing 160.7 0.5 (0.27) 56.9 (31.0)
MST 1024 nodes, 1024 itrs Ptr-chasing 184.2 9.8 (3.7) 19.5 (7.3)
BZIP2 “ref” input Indexed array 147.2 77.3 (22.2) 60.4 (17.0)
MCF “ref” input (41 itrs) Affine array, Ptr-chasing 6909.5 1.3 (0.54) 50.7 (21.8)

Table 2: Benchmark summary. The first three columns report the name, the data input set, and the source(s) of
sparse memory references for each benchmark. The last three columns report the number of instructions (in millions)
in the initialization, warm up, and data collection phases. Values in parentheses report data reference counts (in
millions).

Cache Sector Block Associativity Replacement Write-Hit
Model Size Size Policy Policy

Conventional - 64 bytes 2-way LRU Write-back
Annotated 64 bytes 8 bytes 2-way LRU Write-back
SFP 64 bytes 8 bytes 2-way LRU Write-back

Table 3: Cache model parameters used in our cache simulations.

cache simulations designed to characterize the ben-
efits and drawbacks of annotated memory instruc-
tions. We first compare our technique against a con-
ventional cache to quantify the memory traffic reduc-
tions afforded by annotated memory instructions. We
then compare our technique against Spatial Footprint
Predictors (SFP), an existing hardware-based selec-
tive sub-blocking technique.

We modified SimpleScalar v3.0’s cache simulator
to provide the cache models necessary for our exper-
iments. We added sectored caches and augmented
the PISA ISA with the annotated memory instruc-
tions in Table 1 to model our technique. Our tech-
nique also requires instrumenting annotated memory
instructions for each benchmark. We followed the al-
gorithms in Sections 3.2 and 3.3 for identifying sparse
memory references and computing size annotations,
and then inserted the appropriate annotated memory
instructions into the application assembly code. All
instrumentation was performed by hand. Finally, we
implemented an SFP cache which we will describe
in Section 5.3. Table 3 presents the cache parame-
ters used for our experiments. Note the sector size
belonging to the sectored caches (for both our tech-
nique and SFP) is set to the cache block size of the
conventional cache, 64 bytes, to facilitate a meaning-
ful comparison.

Each of our cache simulations contain three phases:
we perform functional simulation during an initializa-
tion phase, we turn on modeling and perform a cache
warm up phase, and then we enter the actual data col-
lection phase. Each phase is chosen in the following

manner. We identify each benchmark’s initialization
code and simulate it entirely in the first phase. After
initialization, Irreg, Moldyn, and NBF perform
a computation repeatedly over a static data struc-
ture. For these benchmarks, the warm-up and data
collection phases simulate the first and next 10 it-
erations, respectively. Health and MCF also per-
form iterative computations, but the data structure
is dynamic. For Health and MCF, we include sev-
eral compute iterations in the first phase (500 and
5000, respectively) to “build up” the data structure.
Then, we warm up the cache for 1 iteration and col-
lect data over several iterations (105 and 40, respec-
tively). For MST, another iterative computation, we
simulate the entire program after initialization, per-
forming the first 100 out of 1024 compute iterations
in the warm up phase. Finally, for BZIP2, we warm
up the cache and collect data over large regions to
capture representative behavior because we could not
find a single “compute loop” in this benchmark. Ta-
ble 2 reports the phase sizes in the “Init,” “Warm,”
and “Data” columns. Although the warm up and
data collection phases are small, they accurately re-
flect cache behavior due to the iterative nature of our
benchmarks. We verified for several cases that in-
creasing warm up or data collection time does not
qualitatively change our results.

5.2 Cache Traffic and Miss Rate

Figure 5 plots cache traffic as a function of cache size
for a conventional cache (Conventional), a sectored
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Figure 5: Cache traffic as a function of cache size. Traffic is reported for a conventional cache (Conventional),
a sectored cache with annotated memory instructions (Annotated), and two SFP caches (SFP-Ideal and SFP-
Real). All traffic values are in units of MBytes.

cache using annotated memory instructions (Anno-
tated), and two SFP caches (SFP-Ideal and SFP-
Real). We report traffic to the next memory hier-
archy level for each cache, including fetch and write-
back traffic but excluding address traffic. Cache size
is varied from 1 Kbyte to 1 Mbyte in powers of two; all
other cache parameters use the values from Table 3.

Comparing the Annotated and Conventional
curves in Figure 5, we see that annotated memory in-
structions reduce cache traffic significantly compared
to a conventional cache. For NBF, Health, MST,
and MCF, annotated memory instructions reduce
over half of the cache traffic, between 54% and 71%.
Furthermore, these percentage reductions are fairly
constant across all cache sizes, indicating that our
technique is effective in both small and large caches
for these benchmarks. For Irreg, annotated memory
instructions are effective at small cache sizes, reduc-
ing traffic by 55% or more for caches 64K or smaller,
but lose their effectiveness for larger caches. Irreg

performs accesses to a large data array through an
index array. Temporally related indexed references
are sparse, but over time, the entire data array is
referenced. Large caches can exploit the spatial lo-
cality between temporally distant indexed references
because cache blocks remain in cache longer. As the
exploitation of spatial locality increases in Irreg,

annotated memory instructions lose their advantage.
Finally, for Moldyn and BZIP2, the traffic reduc-
tions are 42% and 31%, respectively, averaged over all
cache sizes. The memory reference patterns in Mol-

dyn are less sparse, providing fewer opportunities to
reduce traffic.

Figure 6 plots cache miss rate as a function of cache
size for the “Conventional,” “Annotated,” and “SFP-
Ideal” caches in Figure 5. Comparing the Annotated
and Conventional curves in Figure 6, we see that the
traffic reductions achieved by annotated memory in-
structions come at the expense of increased cache
miss rates. Miss rate increases range between 10.7%
and 43.1% for Moldyn, NBF, MST, BZIP2, and
MCF, and roughly 85% for Irreg and Health.

The higher miss rates incurred by annotated mem-
ory instructions are due to the inexact nature of our
spatial locality detection algorithm described in Sec-
tion 3.3. For indexed array and pointer-chasing ref-
erences, we perform analysis only between references
within a single compound structure, i.e. within a sin-
gle loop iteration. Our technique does not detect spa-
tial locality between references in different loop iter-
ations because the separation of such inter-iteration
references depends on runtime values that are not
available statically. Hence, our size annotations are
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Figure 6: Cache miss rate as a function of cache size. Miss rates are reported for a conventional cache
(Conventional), a sectored cache with annotated memory instructions (Annotated), and an SFP cache (SFP-
Ideal).

overly conservative, missing opportunities to exploit
spatial locality whenever multiple indirect references
through index arrays or pointers coincide in the same
sector. Fortunately, as we will see in Section 6, the
benefit of traffic reduction usually outweighs the in-
crease in miss rate, resulting in performance gains.

5.3 Spatial Footprint Predictors

Spatial Footprint Predictors (SFP) perform prefetch-
ing into a sectored cache using a Spatial Footprint
History Table (SHT). The SHT maintains a history
of cache block “footprints” within a sector. Each
footprint records the cache blocks referenced within
a sector during the sector’s lifetime in the cache. The
SHT stores all such footprints for every load PC and
cache-missing address encountered. On a sector miss,
the SHT is consulted to predict those cache blocks in
the sector to fetch. If no footprint is found in the
SHT, the entire sector is fetched. Our SFP cache
models the SFP IA,DA

1 configuration in [12].
The “SFP-Ideal” curves in Figure 5 report the traf-

fic of an SFP cache using a 2M-entry SHT. Assuming
4-byte SHT entries, this SHT is 8 Mbytes, essentially
infinite for our workloads. Figure 5 shows annotated
memory instructions achieve close to the same traffic
as SFP-Ideal for Irreg, NBF, Health, and MST.
For Moldyn and MCF, however, SFP-Ideal reduces
20.6% and 25.3% more traffic, respectively, than our
technique. Finally, in BZIP2, SFP-Ideal outperforms
annotated memory instructions for small caches, but
is slightly worse for large caches. Figure 5 demon-
strates our technique achieves comparable traffic with
an aggressive SFP, despite using much less hardware.
Comparing miss rates, however, Figure 6 shows SFP-

Ideal outperforms our technique, essentially matching
the miss rate of a conventional cache. As discussed
in Section 5.2, our technique misses opportunities to
exploit spatial locality due to spatial reuse that is
undetectable statically. SFP can exploit such reuse
because it observes application access patterns dy-
namically.

The “SFP-Real” curves in Figure 5 report the traf-
fic of an SFP using an 8K-entry SHT. The SHT in
SFP-Real is 32 Kbytes. Figure 5 shows SFP-Real is
unable to reduce any traffic for Moldyn, Health,
MST, and MCF. In Irreg, NBF, and BZIP2, mod-
est traffic reductions are achieved, but only at small
cache sizes. In practically all cases, our technique re-
duces more traffic than SFP-Real. The large working
sets in our benchmarks give rise to a large number of
unique footprints. A 32K SHT lacks the capacity to
store these footprints, so it frequently fails to provide
predictions, missing traffic reduction opportunities.

6 End-to-End Performance

This section continues our evaluation of annotated
memory instructions by measuring performance on a
detailed cycle-accurate simulator.

6.1 Simulation Environment

Like the cache simulators from Section 5, our cycle-
accurate simulator is also based on SimpleScalar v3.0.
We use SimpleScalar’s out-of-order processor module
without modification, configured to model a 2 GHz
dynamically scheduled 8-way issue superscalar. We
also simulate a two-level cache hierarchy. Our cycle-
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8-way issue Superscalar processor. Gshare predictor with 2K entries. Instruction Fetch queue = 32.
Instruction Window = 64. Load-Store Queue = 32 . Integer /Floating Point units =  4/4.
Integer latency = 1 cycle. Floating Add/Mult/Div latency = 2/4/12 cycles.

L1/L2 cache size = 16 K-split/512K-unified. L1/L2  associativity = 2-way. L1/L2  hit time = 1 cycle.
L1/L2  Sector size = 32/64 bytes. L1/L2  block size = 8/8 bytes. L1/L2 MSHRs = 32/32.

Processor Model
1 cycle = 0.5ns

Cache Model
1 cycle = 0.5ns

DRAM banks = 64.  Memory System Bus width = 8 bytes. Address send = 4ns
Row Access Strobe = 12 ns. Column Access Strobe = 12 ns. Data Transfer( per 8 bytes) = 4ns.

Memory Sub-System
Model

Table 4: Simulation parameters for the processor, cache, and memory sub-system models. Latencies are reported
either in processor cycles or in nanoseconds. We assume a 0.5-ns processor cycle time.

accurate simulator implements the “Conventional”
and “Annotated” cache models from Section 5 only
(unfortunately, we did not have time to implement
the SFP cache model). For our technique, we use
sectored caches at both the L1 and L2 levels. The
top two portions of Table 4 list the parameters for
the processor and cache models used in our simula-
tions.

Our simulator faithfully models a memory con-
troller and DRAM memory sub-system. Each L2
request to the memory controller simulates several
actions: queuing of the request in the memory con-
troller, RAS and CAS cycles between the mem-
ory controller and DRAM bank, and data transfer
across the memory system bus. We simulate con-
currency between DRAM banks, but bank conflicts
require back-to-back DRAM accesses to perform se-
rially. When the L2 cache makes a request to the
memory controller, it specifies a transfer size along
with the address (as does the L1 cache when re-
questing from the L2 cache), thus enabling variable-
sized transfers. Finally, our memory controller al-
ways fetches the critical-word first for both normal
and annotated memory accesses. The bottom portion
of Table 4 lists the parameters for our baseline mem-
ory sub-system model (the timing parameters closely
model Micron’s DDR333 [13]). These parameters cor-
respond to a 60 ns (120 processor cycles) L2 sector fill
latency and a 2 GB/s memory system bus bandwidth.

Our memory sub-system model simulates con-
tention, but we assume infinite bandwidth between
the L1 and L2 caches. Consequently, the cache traf-
fic reductions afforded by annotated memory instruc-
tions benefit the memory sub-system only (though
the cache miss increases impact both the L1 and L2).
We expect traffic reductions across the L1-L2 bus pro-
vided by annotated memory instructions can also in-
crease performance, but our simulator does not quan-
tify these effects.

Our evaluation considers the impact of annotated
memory instructions on software prefetching, so we
created software prefetching versions of our bench-

marks. For affine array and indexed array references,
we use the prefetching algorithms in [14]. For pointer-
chasing references, we use the prefetch arrays tech-
nique [11]. Instrumentation of annotated memory in-
structions for prefetch, load, and store instructions
occurs after software prefetching has been applied.

6.2 Performance of Annotated Mem-
ory Instructions

Figure 7 shows the performance of our annotated
memory instructions on the baseline memory sys-
tem described in Section 6.1. Each bar in Figure 7
reports the normalized execution time for one of
four versions for each application: without prefetch-
ing using normal and annotated memory instructions
(“N” and “A” bars), and with prefetching using nor-
mal and annotated memory instructions (“NP” and
“AP” bars). Each execution-time bar has been bro-
ken down into three components: useful computa-
tion, prefetch-related software overhead, and mem-
ory stall, labeled “Busy,” “Overhead,” and “Mem,”
respectively. “Busy” is the execution time of the “N”
version assuming a perfect memory system (e.g. all
memory accesses complete in 1 cycle). “Overhead”
is the incremental increase in execution time of the
“NP” and “AP” versions over “Busy,” again on a
perfect memory system. “Mem” is the incremental
increase in execution time over “Busy”+”Overhead”
assuming a real memory system. All times are nor-
malized against the “N” bars.

First, we examine performance without prefetch-
ing. Comparing the “N” and “A” bars in Figure 7,
we see that annotated memory instructions increase
performance for 6 out of 7 applications, reducing ex-
ecution time by as much as 32.7% (MCF), and by
17% on average. The cache traffic reductions of our
technique reported in Section 5.2 result in two per-
formance benefits. First, reduced cache traffic lowers
contention in the memory system, reducing the effec-
tive cache miss penalty. Second, reduced cache traf-
fic benefits pointer-intensive applications (Health,
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Figure 7: Execution time breakdown for annotated memory instructions. Individual bars show performance without
prefetching using normal and annotated memory instructions, labeled “N” and “A”, and performance with prefetching
using normal and annotated memory instructions, labeled “NP” and “AP.”

MST, and MCF). Pointer-chasing loops suffer serial-
ized cache misses; hence, their throughput is dictated
by the latency of back-to-back cache misses. Because
annotated memory instructions transfer less data,
they experience lower cache miss latency (e.g. filling
an L2 cache block takes 64 cycles, compared to 120
cycles for filling an L2 sector), thus increasing the
throughput of pointer-chasing loops.

Recall from Section 5 that annotated memory in-
structions increase the cache miss rate due to reduced
exploitation of spatial locality. Figure 7 demonstrates
that the benefit of reduced cache traffic outweighs the
increase in cache miss rate, resulting in a net perfor-
mance gain for most applications. Irreg is the one
exception. As discussed in Section 5.2, annotated
memory instructions do not provide a significant traf-
fic reduction for Irreg at large cache sizes. Hence,
the increased cache miss rate results in a 3.4% per-
formance loss for Irreg.

Next, we examine prefetching performance. Com-
paring the “NP” and “N” bars in Figure 7, we see
that software prefetching with normal memory in-
structions degrades performance for 4 applications
(Health, MST, BZIP2, and MCF), resulting in
a 7.2% degradation averaged across all benchmarks.
Prefetching adds software overhead, and can increase
memory traffic due to speculative prefetches. The
2 GB/s bandwidth of our baseline memory sub-
system is insufficient for software prefetching to tol-
erate enough memory latency in these applications to
offset the overheads.

Comparing the “AP” and “N” bars, however, we
see that software prefetching with annotated mem-
ory instructions achieves a performance gain for all
7 applications, 22.3% on average. The addition of
prefetching increases memory contention, thus mag-
nifying the importance of reduced traffic provided
by annotated memory instructions. Also, the in-
crease in cache miss rate incurred by annotated mem-
ory instructions is less important when performing

prefetching because the additional cache misses will
themselves get prefetched, hiding their latency. Thus,
annotated memory instructions are generally more ef-
fective when coupled with software prefetching.

7 Conclusion

Our work identifies several data structure traversals
that access memory sparsely, including large-stride
affine array and indexed array traversals, and pointer-
chasing traversals. We extract spatial reuse informa-
tion associated with these traversals, and convey this
information to the memory system. Our technique re-
moves between 54% and 71% of the cache traffic for 7
applications, reducing more traffic than hardware se-
lective sub-blocking using a 32 Kbyte predictor, and
reducing a similar amount of traffic as hardware selec-
tive sub-blocking using an 8 Mbyte predictor. These
traffic reductions come at the expense of increased
cache miss rates, ranging between 10.7% and 43.1%
for 5 applications, and 85% for 2 applications. Over-
all, we show annotated memory instructions provide
a 17% performance gain. Furthermore, performance
gains improve when annotated memory instructions
are coupled with software prefetching, enabling a
22.3% performance gain, compared to a 7.2% per-
formance degradation when prefetching without an-
notated memory instructions.

We conclude that application-level information can
be used to gainfully reduce memory bandwidth con-
sumption and increase performance for irregular and
non-numeric codes. Based on our results, we be-
lieve software should take an active role in managing
memory traffic, particularly in the context of mem-
ory latency tolerance techniques where performance
is highly sensitive to memory traffic volume, but ro-
bust to inexact static analysis.
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