

Physical Experimentation with PrefetchingHelper Thr eads
on Intels Hyper-Thr eadedProcessors

DongkeunKim
��� �

, SteveShih-weiLiao
�
, PerryH. Wang

�
, JuandelCuvillo

�
Xinmin Tian

�
, XiangZou

�
, HongWang

�
, DonaldYeung

�
, Milind Girkar

�
, JohnP. Shen

�

MicroarchitectureResearchLab
�

Departmentof ECE
Intel CompilerLabs

�
, DesktopPlatformsGroup

�
Institutefor AdvancedComputerStudies

Intel Corporation Universityof MarylandatCollegePark
�

�
dongkeun.kim,shih-wei.liao,perry.wang,juan.b.del.cuvillo,xinmin.tian,chris.zou,

hong.wang,milind.girkar, john.shen� @intel.com,yeung@eng.umd.edu

Abstract

Pre-executiontechniqueshavereceivedmuch attentionas an
effective way of prefetching cache blocks to tolerate the ever-
increasingmemorylatency. A numberof pre-executiontechniques
basedon hardware, compiler, or both havebeenproposedand
studiedextensivelyby researchers. They report promisingresults
on simulators that modela SimultaneousMultithreading(SMT)
processor. In this paper, we apply the helper threadingidea on
a real multithreadedmachine, i.e., Intel Pentium4 processorwith
Hyper-ThreadingTechnology, and showthat indeedit can pro-
vide wall-clock speedupon real silicon. To achieve further per-
formanceimprovementsvia helper threads,we investigatethree
helperthreadingscenariosthatare drivenbyautomatedcompiler
infrastructure, and identify several key challenges and opportu-
nities for novel hardware and software optimizations.Our study
showsa programbehaviorchangesdynamicallyduringexecution.
In addition, the organizationsof certain critical hardware struc-
turesin thehyper-threadedprocessors are eithersharedor parti-
tionedin themulti-threadingmodeandthus,thetradeoffs regard-
ing resourcecontentioncanbeintricate. Therefore, it is essential
to judiciously invoke helper threadsby adaptingto the dynamic
programbehaviorsothat wecanalleviatepotentialperformance
degradationdueto resourcecontention.Moreover, sinceadapting
to thedynamicbehaviorrequiresfrequentthreadsynchronization,
havinglight-weightthreadsynchronizationmechanismsis impor-
tant.

1. Intr oduction

As the speedgapbetweenprocessorandmemorysystemin-
creases,a processorspendssignificantamountof time on mem-
ory stallswaiting for the arrival of cacheblocks. To toleratethe
largememorylatency, therehave beena plethoraof proposalsfor
dataprefetching [4, 15]. Recently, a novel thread-basedprefetch-

ing technique,calledpre-execution, hasreceivedmuchattentionin
theresearchcommunity[1, 3, 6, 7, 10, 11,12, 14, 16, 18,19, 20,
25]. Comparedto prediction-basedprefetchingtechniques,pre-
executiondirectly executesa subsetof the original programin-
structions,called a slice [24], on separatethreadsalongsidethe
maincomputationthread,in orderto computefuturememoryac-
cessesaccurately. The prefetchthreadsrun aheadof the main
threadandtriggercachemissesearlieronits behalf,therebyhiding
thememorylatency. To beeffective, thepre-executiontechniques
requireconstructionof efficienthelperthreadsandprocessor-level
supportto allow multiple threadsto run concurrently.

Sincemanualconstructionof helper threadsis cumbersome
and error-prone, it is desirableto automatethis process. Re-
searchershave proposeda numberof systemsto generatehelper
threadsautomatically. Collins et al. [6] proposeda hardware
mechanismto constructhelperthreadsat run-timeusinga post-
retirementqueue. Liao et al. [11] developeda post-passbinary
adaptationtool to analyzean existing applicationbinary, extract
helperthreads,and form an augmentednew binary by attaching
the helper threadsto the original binary. Kim and Yeung[10]
proposeda compilerframework to generatehelperthreadsat the
programsourcelevel. All thesestudieshave evaluatedthehelper
threadingideaonsimulation-basedenvironmentsthatmodelSMT
processors[21] and demonstratedthat it is a promising data
prefetchingtechnique.

With the advent of Intel PentiumR
�

4 processorwith Hyper-
ThreadingTechnology[9, 13], a commerciallyavailable multi-
threadedprocessorsupportingtwo logical processorssimultane-
ously, it is possibleto evaluatethehelperthreadingideaonaphys-
ical SMT machine.In this paper, we developa new optimization
module in the Intel pre-productioncompiler to constructhelper
threadsautomatically, andevaluatethe helperthreadingidea on
the Intel Pentium4 processorwith Hyper-ThreadingTechnology.
To the bestof our knowledge,therehasbeenno publishedwork
that implementsand experimentswith helper threadson a real

multithreadedprocessor. We provide the insights gainedfrom
our experienceand discussthe importantingredientsto achieve
speedupon sucha physicalsystem. Although supportingSMT,
thehyper-threadedprocessordoeshaveuniqueimplementationas-
pectsthataredistinctfrom theproposeddesignof a researchSMT
processor[21]. In this study, wefind theseuniqueaspectsdirectly
influencethetradeoffs for applyinghelperthreads.

To improve the performanceof an applicationprogramwith
helperthreads,we observe that several key issuesneedto be ad-
dressed.First, theprogrambehavior changesdynamically;for in-
stance,eventhesamestaticloadincursdifferentnumberof cache
missesfor differenttimephases.Therefore,ahelperthreadshould
beableto detectthedynamicprogrambehavior at run-time.Sec-
ond,sincesomeof thehardwarestructuresin thehyper-threaded
processorsaresharedor partitionedin themulti-threadingmode,
resourcecontentioncan be an issue, and consequently, helper
threadsneedto be invoked judiciously to avoid potentialperfor-
mancedegradationdueto resourcecontention.Lastly, weobserve
that the dynamicprogrambehavior changesat a fine granularity.
To adaptto thedynamicbehavior, helperthreadsneedto beacti-
vatedandsynchronizedvery frequently. Therefore,it is important
to have low overheadthreadsynchronizationmechanisms.

Helperthreadinghasaveryuniquecharacteristic.Comparedto
traditionalmulti-threadingwhereevery threadshouldbeexecuted
andcommittedin pre-definedorderto guaranteethecorrectnessof
programexecution,helperthreadsonly affect theperformanceof
theapplication.Therefore,a helperthreaddoesnot have to beal-
waysexecutedandcanbedeactivatedwhenever thehelperthread
doesnot improvetheperformanceof themaincomputationthread.
This propertyof helperthreadsprovidesinterestingopportunities
for applyingvariousdynamicoptimizations. In particular, since
the dynamicprogrambehaviors suchascachemissesaregener-
ally micro-architecturaland not available at compile-time,they
canbemosteffectively capturedandadaptedto whenmonitored
at run-time. In this paper, we demonstratethat, in orderto obtain
significantbenefitfrom helperthreading,it is essentialto employ
run-timemechanismsto throttle helperthreadsdynamicallyat a
finegranularity.

Therestof thepaperis organizedasfollows. Section2 presents
the software infrastructuresthat enableour experiments. Sec-
tion 3 describesour experimentalframework and Section4 de-
tails the threehelperthreadingscenarios.Section5 discussesthe
experimentalresultson anIntel Pentium4 processorwith Hyper-
ThreadingTechnology. Section6 summarizesthe key observa-
tionsgainedfrom theexperiments.Section7 discussestherelated
worksandSection8 concludes.

2. Software infrastructur esfor experiments

We develop two softwareinfrastructuresfor our experiments.
Section2.1describesthedesignof anoptimizingcompilermodule
to automaticallyconstructhelperthreadsandSection2.2presents
user-level library routinesfor light-weight performancemonitor-
ing.

2.1. Compiler to construct helper thr eads

For pre-execution techniquesto be widely used,it is neces-
sary to automatethe helperthreadconstructionprocess. In this
section,we describethe designof an optimizationmodulebuilt
in the Intel compiler infrastructure. In the compiler, the helper
threadconstructionconsistsof several steps.First, the loadsthat
incur a largenumberof cachemissesandalsoaccountfor a large
fractionof the total executiontime areidentified. After selection
of anappropriateloop level surroundingthecache-missingloads,
thepre-computationsliceswithin thatloopboundaryareextracted
andthe live-in variablesareidentifiedaswell. Finally, appropri-
atetriggerpointsareplacedin theoriginalprogramandthehelper
threadcodesaregenerated.

2.1.1. Delinquent load identification. The first step in
the helperthreadgenerationis to identify the top cache-missing
loads,known asdelinquentloads,throughprofile feedback.This
is achievedby runningtheapplicationon the Intel VTuneTM per-
formanceanalyzer[23] to collect the clock cyclesandL2 cache
misses.The applicationprogramis profiled with the sameinput
setas is usedin the later experiments.However, we find differ-
ent input setsdo not usuallyaffect thesetof the identifieddelin-
quent loads. After readingin the VTune profiles, the compiler
back-endoptimizercorrelatesthedatawith its intermediaterepre-
sentationusingsourceline numbers.From analyzingthe profile
information, the compilermoduleidentifiesthe delinquentloads
andalsokeepstrackof thecyclecostsassociatedwith thosedelin-
quentloads,i.e., memorystall time. Finally, thedelinquentloads
that accountfor a large portion of the entire executiontime are
selectedto betargetedby helperthreads.

2.1.2. Loop selection. Oncethe target delinquentloadsare
identified,the compilermoduleforms a region within which the
helperthreadwill be constructed.Previous researchhasshown
thatdelinquentloadsmostlikely occurwithin a heavily traversed
loop nest[10, 11]. Thus,loop structurescannaturallybeusedfor
picking anappropriateregion. As to befurtherelaboratedin Sec-
tion 3.1.3, the costof threadactivation andsynchronizationin a
real systemis in the rangeof thousandsof cycles. Therefore,a
key criterion in selectinga properloop candidateis to minimize
theoverheadof threadmanagement.Onegoal is to minimizethe
numberof helperthreadinvocations,which canbeaccomplished
by ensuringthe trip countof theouter-loop thatencompassesthe
candidateloop is small. A complementarygoal is to ensurethat
the helperthread,onceinvoked, runsfor an adequatenumberof
cyclesin orderto amortizethethreadactivationcost.Therefore,it
isdesirabletochoosealoopthatiteratesareasonablylargenumber
of times. In our loop selectionalgorithm,theanalysisstartsfrom
the innermostloop that containsthe delinquentloadsandkeeps
searchingfor thenext outer-loop until theloop trip-countexceeds
a threshold(currentlyonethousanditerations)andthenext outer-
loop’s trip-countis lessthantwice the trip-countof the currently
processedloop. On theotherhand,whentheanalysisreachesthe

outermostloopwithin theprocedureboundary, thesearchendsand
the loop is selected.The loop trip-countinformationis collected
via VTune’s instructioncountprofile. We observe this simpleal-
gorithm is effective, especiallyin the presenceof the aggressive
functioninlining performedby thecompiler.

2.1.3. Slicing. Next, the compiler module identifies the in-
structionsto be executedin the helper threadsand this process
is enabledby slicing. We performprogramslicing that is simi-
lar to backward slicing shown in [26]. Within the selectedloop,
the compilermodulestartsfrom a delinquentload and traverses
thedependenceedgesbackwards.To constructefficient andlight-
weightedhelperthreads,only thestatementsthataffect theaddress
computationof the delinquentload, including the changeof the
controlflow, areselectedasa sliceandeverythingelseis filtered
out. Sincehelperthreadsshouldnot affect thecorrectnessof the
main thread,all the storesto heapobjectsor global variablesare
removed from theslice. Onceslicing is completedfor eachindi-
vidual delinquentload, the extractedslicesaremergedto form a
single threadof instructionsequenceto target all the delinquent
loadswithin thesameloopboundary.

2.1.4.Li ve-in variable identification. Oncea helperthread
is formed,the live-in variablesto thehelperthreadareidentified.
Throughanalysis,the variablesusedin the selectedloop aredi-
videdinto two groups:thosethathaveupwards-exposedreadsand
thosethatareprivatizable.Thevariablesin the formergroupare
selectedas live-ins and will be explicitly passedthroughglobal
variablesthataredeclaredsolelyfor theuseof helperthreads.

2.1.5.Code generation. After the compileranalysisphases,
theconstructedhelperthreadsareattachedto theapplicationpro-
gramasaseparatecode.In addition,thecodesto create,schedule,
andinvokethehelperthreadareinsertedaswell. In thisstudy, two
staticthreadinvocationstrategiesareinvestigated.Oneis a loop-
basedtriggerwhereahelperthreadis invokedattheentranceof the
targetedloop. Theotheris a sample-basedtriggerwherea helper
threadis invoked onceevery few loop iterationsof the targeted
loop. Section4 providesmoredetailsaboutour threadinvocation
schemes.For a given application,multiple helperthreadscanbe
constructed,eachtargetingdifferentdelinquentloadsat different
loopregions.However, sincethereareonly two logicalprocessors
onthePentium4 hyper-threadedprocessor, it is essentialto reduce
thethreadswitchingoverhead.To doso,thecompilercreatesonly
oneOS threadat the beginning of the programandrecycles the
threadto target multiple loops. The createdhelperthreadenters
a dispatcherloop andsleepsif thereis no helpertaskto dispatch
to. Whenever the main threadencountersa trigger point, it first
passesthefunctionpointerof thecorrespondinghelperthreadand
the live-in variables,andwakes up the helperthread. After be-
ing wokenup,thehelperthreadindirectly jumpsto thedesignated
helperthreadcoderegion, readsin the live-ins,andstartsexecu-
tion. Whenthe executionends,the helperthreadreturnsbackto
thedispatcherloop andgoesto sleepagain.

2.2. EmonLite: User-level library routinesfor per-
formancemonitoring

In order to ensurea helperthreadcan adaptto the dynamic
programbehavior, we needa light-weightmechanismto monitor
suchdynamiceventsascachemissesandat very fine sampling
granularity. Someexisting tools, suchas pixie [17], instrument
theprogramcodeto usecachesimulatorto simulatethedynamic
behavior of a program. However, this methodologymay not ac-
curatelyreflecttheactualprogrambehavior on a physicalsystem
andoften slows down the programexecution. To remedythese
issues,we introducea library of user-level routines,calledEmon-
Lite, which performslight-weightprofiling throughthedirectuse
of theperformancemonitoringeventssupportedon the Intel pro-
cessors.Provided as a library of compiler intrinsics, EmonLite
allows a compiler to instrumentat any location of the program
codeto directly readfrom thePerformanceMonitoring Counters
(PMCs). Therefore,event statisticssuchas clock cycles or L2
cachemissescanbecollectedfor a selectedcoderegion at a very
fine granularitywith high accuracy andlow overhead.The Intel
processorssupportperformancemonitoringof over 100different
micro-architecturaleventsassociatedwith branchpredictor, trace
cache,memory, bus, andinstructionevents. Compiler-basedin-
strumentationvia EmonLiteenablescollectionof thechronology
of certaininstruction’s dynamiceventsfor a wide rangeof appli-
cations.Suchprofiling infrastructurecanbe leveragedto support
dynamicoptimizationssuchasdynamicthrottling of both helper
threadactivationandtermination.

2.2.1.EmonLite vs. VTune. The VTuneperformancean-
alyzer can be usedto samplevarious performancemonitoring
events over the entire programexecution. It provides the pro-
file data ranging in scopefrom process,to module, procedure,
source-line,andevenassemblyinstructionlevel. However, VTune
providesonly a summaryof samplingprofile for the entirepro-
gramexecutionandtherefore,it is difficult to extractthedynamic
chronologicalbehavior of aprogramfrom VTune’sprofile. In con-
trast,EmonLiteprovidesthechronologyof theperformancemoni-
toringeventsandthus,it enablesanalysisof time-varyingbehavior
of theworkloadatafinegranularityandcanleadto dynamicadap-
tationandoptimization.In addition,EmonLiteis a library of user-
level routinesand can be directly placedin the programsource
code to discriminatelymonitor the dynamicmicro-architectural
behaviors for the judiciouslyselectedcoderegions. Lastly, while
VTune’s samplingbasedprofiling relieson thebuffer overflow of
thePMCsto triggeranevent exceptionhandlerregisteredat OS,
EmonLitereadsthecountervaluesdirectly from thePMCsby ex-
ecutingfour assemblyinstructions. Consequently, EmonLite is
extremelylight-weight;it rarelyslowsdown theuserprogrampro-
videdthattheprofiling samplinginterval (i.e.,how frequentlythe
PMCsareread)is reasonablysized.

2.2.2.Componentsof EmonLite. TheEmonLitelibrary pro-
videstwo compilerintrinsicsthatcanbeeasilyinsertedinto auser

while (arcin) {
/* emonlite_sample() */
if (!(num_iter ++ % PROFILE_PERIOD)) {

cur_val = readpmc(16);
L2miss[num_sample++] = cur_val - prev_val;
prev_val = cur_val;

}

tail = arcin - >tail;
if (tail - >time + arcin - >org_cost > latest) {

arcin = (arc_t *) tail - >mark;
continue;

}
...

}

Figure 1. Example of EmonLite code instru-
mentation - price out impl() of MCF.

programcode.Oneof theroutines,calledemonlite begin() ,
initializes and programsa set of EMON-relatedMachine Spe-
cific Registers (MSRs) to specify the performancemonitoring
eventsfor which the profiles are collected. This library routine
is insertedat the beginning of the userprogramand is executed
only once for the entire programexecution. The other intrin-
sic,calledemonlite sample() , readsthecountervaluesfrom
the PMCsandis insertedin the usercodeof interest. Sincethe
PMCprovidesperformanceeventinformationfor eachlogicalpro-
cessor, to ensureaccuracy of profiling, the target applicationis
pinnedto a specificlogical processorvia OSaffinity API, suchas
SetThreadAffinityMask() in Win32API.

2.2.3.Implementation issues. Automaticinstrumentationof
EmonLite library routinesis also implementedin the Intel pre-
productioncompiler. For a selectedcoderegion, the following
stepsaretaken to generatethechronologyof performancemoni-
toringevents.
Step 1. Sameaspreviously describedcompileranalysisphases,
thedelinquentloadsarefirst identifiedandappropriateloopsare
selected.
Step 2. The compiler insertsthe instrumentationcodesinto the
userprogram. In the main() function of the userprogram,it
insertsemonlite begin() to initialize EmonLiteandset up
correspondingPMCs.
Step 3. For each loop that is identified in Step 1, the com-
piler insertscodesto readthe PMC valuesonceevery few iter-
ations. Figure 1 shows how instrumentationcodesare inserted
in a loop in price out impl() of MCF, a benchmarkin the
SPECCINT2000suite. By varying the profiling interval, PRO-
FILE PERIOD,thegranularityandsensitivity of profiling canbe
easilyadjusted.

2.2.4.Example usageof EmonLite: Chronology of L2
cachemiss event. Figure2 depictsthe chronologyof the L2
cachemisseventsfor thesameloop usedin Figure1. Thegraph
illustratesthe dynamicbehavior of the L2 cacheat a very fine

Table 1. System configuration
CPU 2.66GHzIntel Pentium4 with Hyper-

ThreadingTechnology
L1 Tracecache 12K micro-ops,8-way setassociative

6 micro-opsperline
L1 Datacache 16KB, 4-waysetassociative

64B line size,write-through
2-cycle Integer, 4-cycle FP

L2 Unified cache 512KB,8-way setassociative
64B line size,7-cycle accesslatency

DTLB 64entries,fully associative,map4K page
Loadbuffer 48entries
Storebuffer 24entries
Reorderbuffer 128entries
OS Windows XP Professional,ServicePack1

granularity, i.e., 10 loop iterationsper sample(around2K cycles
on average). In the figure, it is obvious that therearetime frag-
mentswherethe main threadincurs small or even no L2 cache
misses.If a helperthreadwerelaunchedfor a periodwithout any
cachemisses,it couldpotentiallydegradetheperformanceduring
this time interval dueto hardwareresourcecontention.This ob-
servation motivatescertainmechanismsto control helperthreads
dynamically, which is furtherdiscussedin Section5.2.

Figure3 illustratesanotherexampleof chronologyat a much
coarsergranularityfor the sameloop. The numberof L2 cache
missesis collectedfor every100,000iterations;eachprofiling pe-
riod taking about14M cycleson average.This figure shows the
EmonLiteprofile for theentireprogramexecutionandaphasebe-
havior of L2 cachemissesfor theprogramis evident.

3. Experimental framework

Our experimentsareperformedon a real physicalsystemus-
ing a Pentium4 Processorwith Hyper-ThreadingTechnology. In
thissection,wepresentthehardwareconfigurationandthebench-
marksusedin theexperiments.

3.1. HardwareSystem

3.1.1.Systemconfiguration. As shown in Table1, we use
a systemwith a 2.66GHzIntel Pentium4 processorwith Hyper-
ThreadingTechnology[9, 13]. The systemcontainsonephysi-
cal processor, which supportstwo logical processorssimultane-
ously. For thememorysubsystem,theprocessorcontainsa trace
cachefor instructionsanda 16KB datacacheat thefirst level, and
a 512KB unified cacheat the secondlevel. The processorim-
plementsa hardwarestrideprefetcherfor prefetchingdatacache
blocks.

3.1.2. Hyper-thr eaded processors. Unlike a proposed
SMT processor[21] wheremost, if not all, micro-architectural
structuresare sharedbetweenthe logical processors,the micro-
architecturalresourcesin the Intel hyper-threadedprocessorsare
manageddifferently. As detailedin [13], a hyper-threadedpro-

	

��
��
���
���
���

� ��� ��� � � !�" #�$ %�& '�()+* ,�- ./�021�3425�6�728�9�:<;>=�?<@A+BDC�E�FDG�H�IDJ�K�LDM�N�OQP�R�S
TVUXWZY\[]_^ `badcfehgZikj l monqporXsut vxwZy_z|{~} �o�\��� �d��������� �\�����

���
� ��
� �
�� ��
� �

Figure 2. Chronology of L2 cache miss events at a fine gran ularity - price out impl() of MCF

0

40

80

120

160

200

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001

Sample ID (Sampling Period = 100,000 loop iterations)

L2

 C
ac

he
 M

is
se

s
(x

10
00

)

Figure 3. Coarse-grain phase behavior of L2 cache miss events - price out impl() of MCF

cessordynamicallyoperatesin oneof two modes;in ST (Single
Threading)mode,all on-chipresourcesin Table1 aregiven to a
singleapplicationthreadwhereas,in MT (Multi-Threading)mode,
theseresourcesareshared,duplicatedor partitionedbetweenthe
two logicalprocessors.As shown in Table2, structureslikecaches
andexecutionunitsaresharedbetweenthetwo logicalprocessors,
verymuchlikeresourcesharingonaresearchSMTprocessor[21].
On the other hand,structureslike the reorderbuffer are evenly
hard-partitionedto prevent onelogical processorfrom taking up
thewholeresource.In addition,micro-architecturalresourceslike
theITLB andthereturnstackbuffer arereplicatedfor eachlogical
processor. ThetransitionbetweenSTandMT modesoccursauto-
maticallywhenanapplicationthreadon a givenlogical processor
eithersuspendsor getsreactivated. In particular, suchtransition
is primarily due to synchronizationbetweenapplicationthreads
runningon thelogicalprocessors.

3.1.3. Thr ead synchronization mechanisms.
In this paper, we compare two mechanismsfor invoking
and suspending helper threads. First, the Win32 API,
SetEvent() and WaitForSingleObject() , can be used
for thread management. When an active thread calls
WaitForSingleObject() , theWindows schedulerwaitsun-
til theCPUutilization of thecorrespondinglogicalprocessorfalls
below 10%. Only then doesthe OS deschedulethe suspended

Table 2. Hardware management in Intel hyper -
threaded processor s
Shared Tracecache,L1 D-cache,Executionunits

L2 cache,Globalhistoryarray, Allocator
MicrocodeROM, Uop retirementlogic
IA-32 instructiondecode,DTLB
Instructionscheduler, Instructionfetchlogic

Duplicated Perlogicalprocessorarchitecturestate
Instructionpointers,Renamelogic, ITLB
Streamingbuffers,Returnstackbuffer
Branchhistorybuffer

Partitioned Uop queue,Memoryinstructionqueue
Reorderbuffer, Generalinstructionqueue

threadand trigger a modechangefrom MT modeto ST mode.
Thelatency betweenthemomentsthe threadcalls for suspension
to theoccurrenceof themodetransitionis non-deterministicand
it is between10K to 30K cycles.

To lower the threadswitching and synchronizationcost, we
prototypeahardwaremechanismthatimplementsuser-level light-
weight threadsynchronizationinstructionssimilar to the lockbox
primitivesdescribedin [22]. This hardware mechanismis actu-
ally implementedin realsiliconasanexperimentalfeature.In our
hardwaresynchronizationmechanism,a threadcanissuea single

0

20

40

60

80

100

MCF ART BZIP2 MST EM3D

P
er

ce
nt

ag
e

(%
)

Cycle L2 miss

Figure 4. VTune profiles: cycles and L2 cache
misses associated with delinquent loads

instructionto suspendandcandirectly causethemodetransition
from MT modeto ST mode.Conversely, anotherthreadcanissue
asingleinstructionto wakeupasuspendedthreadandcauseSTto
MT modetransition.Usingthesedirecthardwaresynchronization
primitives, threadsuspensiontakes approximately1,500cycles,
which achievesoneorderof magnitudereductionascomparedto
the cost of OS API. Moreover, this hardware mechanismis en-
tirely transparentto theOS.In Section5, we evaluatethe impact
of threadsynchronizationcost for a numberof helperthreading
scenarios.

3.2. Benchmarks

To decidethebenchmarksusedin ourexperiments,wefirst run
entireSPECCPU2000benchmarksuite[8] on VTuneandcollect
thecycle andL2 cachemissprofiles.Then,we selectthoseappli-
cationsthathave significantnumberof cyclesattributedto theL2
cachemisses,includingMCF andBZIP2 from SPECCINT2000
suite,andART from SPECCFP2000suite. The referenceinput
setsareusedfor both profile runsandexperiments.In addition,
we alsopick MST andEM3D from Oldenbenchmarks[2] for the
samereason.

Memory latency tolerancehas long been tackled by both
micro-architecturetechniquesand advancedcompiler optimiza-
tions. For example, the Intel Pentium4 processoremploys a
hardwarestrideprefetcher. In addition, the productioncompiler
canperformvariousoptimizationsto reducethenumberof cache
missessuchascache-consciouscodeor datalayoutandaccessop-
timizations[5]. Our objective is to tacklethosecachemissesthat
remainevenafterthesehardwareandcompilertechniquesareap-
plied, andto achieve additionalspeedupby usinghelperthreads.
The benchmarksarecompiledwith the bestcompiler options(-
O3 -Qipo -QxW) in themostrecentversionof theIntel compiler.
Then, VTune is usedto identify the candidateloads. Figure 4
shows the percentageof the L2 cachemissesthat areassociated
with the targetedloadsover the total L2 cachemisses. It also
shows the percentageof the exposedmemorystall cyclesdueto
thecachemissesover theentireexecutiontime. For every appli-
cationin thefigure,we observed fewer thanfive loadscontribute
to alargefractionof thetotalL2 cachemisses,i.e.,83.5%onaver-

0.99

0.995

1

1.005

1.01

1.015

1.02

MCF ART BZIP2 MST EM3D

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Figure 5. Normaliz ed execution time without
thread pinning (no helper threading)

agefor top five delinquentloads.Thepercentageof memorystall
cyclesindicatesanupperboundon theperformanceimprovement
that is achievable with perfectdataprefetchingfor the targeted
delinquentloads.

3.3. Baseline

In thehyper-threadedprocessors,theWindowsOSperiodically
reschedulesa user threadon different logical processors.This
involves the overheadof OS job-schedulingandcan incur more
cachemissesif multiple physicalprocessorsareemployed in one
system. In the context of helperthreading,a userthreadandits
helperthread,astwo OSthreads,couldpotentiallycompetewith
eachother to be scheduledon the samelogical processor. In
addition,on a multiprocessorconfigurationwith multiple physi-
cal processors,an applicationthreadand its helperthreadcould
alsobescheduledto run on differentphysicalprocessors.In this
case,without sharedcache,the prefetchesfrom a helperthread
will not bebeneficialto the applicationthread. In orderto avoid
theseundesirablesituations,thecompileraddsa call to theWin32
API, SetThreadAffinityMask() , to managethreadaffinity
at thebeginningof theapplicationthreadto pin themaincompu-
tationthreadto a particularlogical processor. This is our baseline
configurationto evaluatehelperthreading. Similarly, the helper
thread,if present,is pinnedto theotherlogicalprocessor.

Figure5 shows theeffectof threadpinningontheperformance
of thebaseline(nohelperthreading)binaries.Eachbarrepresents
the executiontime without threadpinning, which is normalized
on the executiontime with threadpinning. Clearly, threadpin-
ningslightly improvesthesinglethreadperformancein thehyper-
threadedprocessors.This is becausethreadpinning eliminates
someoverheadof OS job scheduling.Throughoutthe restof the
paper, we usetheexecutiontime with threadpinningasthebase-
line referenceperformancenumbers.

4. Helper threadingscenarios

We introducethreehelper threadingscenariosin this paper.
They differ from eachotherwith regardto how the triggerplace-
mentis tailoredin thecodeandwhenthehelperthreadsaretrig-

geredat run-time. In this section,we illustrate the interesting
tradeoffs andtheinsights.

4.1. Static: Loop-basedtrigger

Thefirst helperthreadingscenariois calledLoop-basedStatic
Trigger. In this scenario,a helperthreadis activatedat the en-
trancepoint of thetargetedloop. Oncethehelperthreadis woken
up,it runsthroughall iterationsof theloopwithoutany furtherin-
termediatesynchronization.In otherwords,the inter-threadsyn-
chronizationonly occursoncefor every instanceof the targeted
loop.

Sincethis approachimplementsthe trigger placementat the
well-definedprogramstructures,it is simpleto implement.It can
be useful if the threadsynchronizationcost is high. However,
dueto thelack of intermediatesynchronizationbetweenthemain
threadand the helper threadthroughoutthe computationof the
targetedloop, thehelperthreadcaneitherrun too far aheadof the
main threadandpollute thecache,or run behindthemain thread
andwastecomputationresourceswhichcouldbemoreeffectively
usedby themainthread.

4.2. Static: Sample-basedtrigger

To avoid run-awayhelperthreadsor run-behindhelperthreads,
it is necessaryto perform inter-threadsynchronizationat finer
granularitythanthe sizeof the targetedloop. This motivatesthe
secondhelperthreadingscenario,calledSample-basedStaticTrig-
ger, whereahelperthreadis invokedoncefor everyfew iterations
of the targetedloop. Thenumberof loop iterationsbetweentwo
consecutive helperthreadinvocationsbecomesthe samplingpe-
riod. In this approach,oncethehelperthreadis activated,it exe-
cuteseitherfor thenumberof loop iterationsequalto thesizeof
thesamplingperiod,or until it reachestheterminationof theloop.

Sincethehelperthreadsin this scenarioareinvokedmorefre-
quentlythantheloop-basedstatictrigger, theeffectivenessis more
sensitive to the threadsynchronizationcost. Furthermore,this
scenariorequiresadditionalcodeto be instrumentedin the tar-
getedloop to checkhow far themain threador the helperthread
hasexecutedwithin thesamplingperioditerations.In effect, this
approachreliesuponthe samplingperiodasthe synchronization
boundaryto frequentlycross-checkrelative progressbetweenthe
helperthreadandthemainthread.Thesizeof thesamplingperiod
bindsthedistanceby whichahelperthreadcanrunaheadof or be-
hindthemainthread.Therefore,theeffectivenessof thisapproach
dependson thechoiceof thesamplingperiodat compile-time.

4.3. Dynamic trigger

As illustratedin Figure2, aprogram’sdynamicbehavior varies
at different chronologicalphases. Consequently, helperthreads
may not always be beneficial. Even when the main threadsuf-
ferslong latency cachemisses,theeffectivenessof helperthreads
still dependson a variety of resourcerelatedissuessuchas the
availability of executionunits, occupancy of the reorderbuffer,

Table 3. Statistics for sample-based trig ger
Application Procedure Sampling #

Name Period Samples
MCF refreshpotential 100 2422827
MCF price out impl 1000 1370258
ART match 1000 1672740

BZIP2 sortIt 1000 118201
MST BlueRule 100 44985

EM3D all compute 200 20000

thenumberof cachemisses,memorybusutilization,or fill buffer
(i.e.,Miss StatusHoldingRegisteror MSHR)usage.

To adaptto the dynamicprogrambehavior andavoid activat-
ing a helperthreadwhen it is not needed,we evaluatea simple
dynamichelperthreadingscenario,which is basedon thesample-
basedtrigger presentedin Section4.2. However, ratherthan in-
voking a helperthreadfor every sampleinstance,themainthread
dynamicallydecideswhetheror not to invoke ahelperthreadfor a
particularsampleperiod. Effectively, this is a dynamicthrottling
schemewhich dynamicallymonitorstherelative progressandre-
sourcecontentionsbetweenthemain threadandits helperthread
andthenappliesjudiciouscontrolon bothactivationandtermina-
tion of thehelperthread.

5. Performanceevaluation

We experimentwith compiler-generatedhelperthreadson real
silicon,andpresenttheperformanceresultsandanalysisfrom the
experiments.Section5.1evaluatesthetwo statictriggerscenarios
andSection5.2 investigatestheperformancepotentialof the dy-
namic trigger scenario.Section5.3 gaugesthe impactof thread
synchronizationcost and discussesthe need for lighter-weight
mechanisms.

5.1. Evaluation of static trigger

5.1.1.Statistics for sample-basedtrigger. To evaluatethe
sample-basedstatic trigger scenario,the samplingperiodshould
be determineda priori. The compiler instrumentseachtargeted
loop with EmonLitelibrary routinesto profile the chronologyof
cyclesandL2 cachemisses.Thesamplingperiodis adjustedsuch
thateachsampletakesbetween100Kand200Kcyclesonaverage.
RecallthattheWindows API-basedthreadsynchronizationmech-
anismscostbetween10K and30K cycles,whereastheprototype
hardware-basedsynchronizationmechanismtakesabout1,500cy-
cles. Table3 lists the procedurenamethat containsthe targeted
loop, the samplingperiod in loop iterations,and the numberof
samplesover theentireprogramexecutionfor eachselectedloop.
In eachbenchmarkexceptMCF, aloopthataccountsfor thelargest
fractionof thememorystall time is selected.In MCF, two loops
thatlargelysuffer from thecachemissesarechosen.

5.1.2.Speedupresults. Figure6 reportsthespeedupresultsof
thetwo statictriggerscenarios.For eachscenario,wecomparethe

-30

-25

-20

-15

-10

-5

0

5

10

MCF ART BZIP2 MST EM3D

S
pe

ed
up

 (%
)

Loop-based trigger w/ OS API(LO) Loop-based trigger w/ HW mechanism(LH)

Sample-based trigger w/ OS API(SO) Sample-based trigger w/ HW mechanism(SH)

Figure 6. Speedup of static trig ger

performanceof two threadsynchronizationmechanisms,heavy-
weightWindows API andlight-weighthardwaremechanism.The
speedupis for the entireprogramexecution,not just for the tar-
getedloop. For eachapplication,weshow speedupsin percentage
for four differentconfigurations,LO, LH, SO,andSHasshown in
thefigure.

The differencein performanceimpactby the two threadsyn-
chronizationmechanismsis ratherpronounced.On onehand,for
theloop-basedtrigger, i.e.,LO vs. LH, thelight-weighthardware
threadsynchronizationmechanismonly provides1.8%,on aver-
age,morespeedupthanOSAPI. This is primarily dueto the tar-
getedloopsandtheir correspondinghelperthreadsrun for many
iterationsbeforethe next synchronizationat loop boundary, thus
thestartupsynchronizationcostis muchlesssignificant,evenas-
sumingthe costof OS API. On the otherhand,for the sample-
basedtrigger, i.e., SO vs. SH, the hardwarethreadsynchroniza-
tion mechanismachieves5.5%additionalgainon average.Since
the helperthreadsareactivatedmorefrequentlyin sample-based
trigger scenario,the effectivenessis much more sensitive to the
threadsynchronizationoverhead.The heavy-weight OS API in-
troducessignificantoverheadon the main threadandpotentially
causeshelperthreadto beactivatedout of phase,thusresultingin
ineffectualpre-computationwhich not only runsbehindbut also
takesawaycritical processorresourcesfrom themainthread.This
explainsthe slowdown in SO for mostbenchmarksexceptMCF,
whichsuffersfrom lotsof long latency cachemisses.

Comparingtheperformanceof loop-basedtriggerandsample-
basedtrigger, the loop-basedtriggerperformsslightly betterthan
sample-basedtrigger for the currentsamplingperiodand thread
synchronizationcost. Using OS API for threadsynchronization,
i.e., LO vs. SO, the loop-basedtrigger outperformsthe sample-
basedtrigger for all applicationsexcept EM3D. In EM3D, with
theloop-basedtrigger, thehelperthreadrunsaway from themain
threaddue to the lack of synchronization,and the memoryac-
cessesin the run-away helperthreadcausesexcessive cachepol-
lution. However, thesample-basedtriggercaneffectively prevent
cachethrashing,therebyproviding betterperformancefor EM3D.
For theotherapplications,sincethesample-basedtrigger invokes

0

20

40

60

80

100

120

MCF ART BZIP2 MST EM3D

N
or

m
al

iz
ed

 L
2

C
ac

he
 M

is
se

s

Main thread Helper thread

Figure 7. Cache miss coverage: Loop-based
trig ger with HW sync hronization mechanism

helperthreadsmorefrequently, theheavy-weightoverheadof call-
ing OSAPI significantlyaffectsthemainthreadsperformance.

On the other hand, if the light-weight hardware threadsyn-
chronizationmechanismis employed, i.e., LH vs. SH, the per-
formancewith the sample-basedtrigger is comparableto that of
the loop-basedtrigger. In MCF and BZIP2, there is little dif-
ferencebetweenthesetwo scenarios.On the other hand,since
the targetedloop in ART consistsof only 12 instructions,instru-
mentationcodeaccountsfor a relatively largeportionof theloop,
resultingin the performancedegradationwith the sample-based
trigger. In MST, thesample-basedtriggerperformsworsedueto
boththethreadsynchronizationcostandthecodeinstrumentation
overhead.Thougha reductionby anorderof magnitudefrom OS
API’s overhead,even at 1,500cycles,the hardwaresynchroniza-
tion still takesmorethan2 timesas long asthe latency to serve
a cachemissto themainmemory. As the threadsynchronization
costbecomeseven lower, thesample-basedtrigger is expectedto
bemoreeffective.

5.1.3. Dynamic behavior of helper thr eading. In order
to further shedinsightson the tradeoffs of helperthread,we in-
vestigatethedynamicbehaviors of helperthreadeffectiveness,in
termsof reductionin both cachemisscoverageandcycle count
improvement.

Figure7 illustratesthe L2 cachemiss coveragebasedon the
VTune profile for the loop-basedstatic trigger with hardware
threadsynchronizationmechanism(configurationLH from Fig-
ure6). In thegraph,we show, within thetargetedloop, thecache
miss countsincurred by both the delinquentloads in the main
threadandprefetchesin thehelperthreadfor thoseloads. Those
cachemisscountsarenormalizedon that of the baselinefor the
samesetof delinquentloads.Thedataclearlyindicatesthathelper
threadingcanachieve significantreductionin cachemissesin the
main thread,rangingfrom 25.3%in ART to 60.4%in EM3D. In
EM3D,helperthreadseliminatealargeportionof L2 cachemisses
for the targetedloads. However, they significantly increasethe
numberof cachemissesfor the non-targetedloads,which is not
shown in Figure7, therebydegradingtheoverall performance.

In addition, this graphalso revealssomeinefficiency of the

0

150

300

450

600

750

900

1 11 21 31 41 51 61 71 81 91

Sample ID

L2

 C
ac

he
 M

is
se

s

Baseline Helper Threading

0

80

160

240

320

400

1 11 21 31 41 51 61 71 81 91

Sample ID

C
yc

le
s

(x
10

00
)

Baseline Helper Threading

(a) L2 cache miss event

(b) Cycle event

Figure 8. Dynamic behavior of perf ormance
events with and without helper threading

statictriggerhelperthreadingscenarios.First, in all benchmarks
exceptfor BZIP2, thepercentageof thecachemissescoveredby
the helper threadis not closeto 100%. This indicatesthat the
helper threadsometimesruns behindthe main threadand thus,
thehelperthreadshouldnot beactivatedfor certainperiod. Sec-
ond, in ART, BZIP2, MST, andEM3D, the sumof the two bars
exceeds100%. This indicatesthat, for certaintime phases,the
helper threadruns too far aheadof the main threadand incurs
cachethrashing.Duringthesetimephaseswhenthehelperthreads
arenot effective, dynamicthrottling can be introducedto either
suspendan on-goinghelperthreador prevent activating the next
helperthreadinstance.

Figure 8 shows the EmonLite-basedchronology of the L2
cachemisseventsandthecycle eventsof BZIP2 for 100samples
usinga sample-basedstatic trigger scenario.Eachgraphdepicts
two setsof data,one without helper thread(Baseline),and the
otherwith helperthread. Comparingthe patternsin Figure8(a)
and 8(b), there exists strong correlationbetweenthe L2 cache
missevent andthecycle event,which implies that thosetargeted
loadstriggeringtheL2 cachemissesarelikely critical. However,
whenhelperthreadingis applied,therearesomesamplephases
whenL2 cachemiss reductionsdo not convert to similar reduc-
tions in cycle counts.For instance,betweensampleID of 71 and

Table 4. Percenta ge SD statistics
Application % SD(cycle) % SD(L2miss)

MCF (refresh) 44.80% 39.45%
MCF (implicit) 44.50% 50.41%

ART 17.14% 3.79%
BZIP2 61.91% 96.83%
MST 30.59% 30.86%

EM3D 46.05% 44.72%

88, even thoughthe numberof L2 cachemissesis reducedwith
helperthreads,the cycle countsactually increase. Therefore,it
would be helpful to detectthe time phaseswhenthe application
performanceis degradedsothathelperthreadsdonotgetactivated
during thosephases.This observation leadsus to considercer-
tain run-timemechanismsto dynamicallythrottle helperthreads,
a topic to bediscussedin thenext section.

5.2. Evaluation of dynamic trigger

In this section,we explore thepotentialof dynamicthrottling
of helperthreadsassumingperfectthrottlingmechanisms.

5.2.1.Quantifying dynamic behavior. To quantify thedy-
namicbehavior of thetargetedloops,usingthesamesamplingpe-
riod shown in Table3, we profile cycle andL2 cachemissevents
for eachsamplewithout helperthreading.Then,we computethe
percentagestandarddeviation (SD) of thecyclesandtheL2 cache
missesamongall thesamplesasshown in thefollowing equation,
wherePMC(i) is thePMC valuefor thei-th sample,A is theaver-
agePMC valuepersample,andN is thetotal numberof samples.

 V¡£¢�¤¦¥¨§ © ¢�ªZ«¬®¢�¯°¥²±£³¦¥+´
µ ¶¸·+¹º¹V» ³

Table 4 reportsthe percentageSD valuesfor cycles and L2
cachemisses. A large SD value implies the performanceevent
is moretime-variantdynamically. Again, thereexists somecor-
relationbetweenthe cycle event andL2 cachemissevent on the
SD.Or rather, if oneperformancemonitoringeventis dynamically
variant,so is the otherone. This is becausethe delinquentloads
in our targetedloopsareusuallyon thecritical pathandthus,the
cachemissbehavior directlyaffectsthecyclecountbehavior.

5.2.2. Performance potential with perfect thr ottling .
To evaluatethe dynamicthrottling mechanisms,it is essentialto
gaugewhen the helper threadimproves or degradesthe perfor-
manceof the main thread. This can be doneby comparingthe
cycleswith andwithout helperthreads.For a limit study, anideal
scenariois to activatethe helperthreadwhenit is beneficialand
deactivate it when it degradesperformance.Thus, the first step
is to collect theEmonLiteprofiles,usingthe sample-basedstatic
trigger, for everysamplingperiodwith andwithouthelperthreads.
Using the sampleswithout helperthreadsas baseline,the cycle
countsof thesamplesthatshow performanceimprovementswith

0

20

40

60

80

100

120

MCF ART BZIP2 MST EM3D

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Static trigger w/ OS API Dynamic trigger w/ OS API

Static trigger w/ HW mechanism Dynamic trigger w/ HW mechanism

Figure 9. Performance comparison between
static and dynamic trig ger scenarios

helperthreadsare recorded. For the remainingsamples,the in-
creasedcyclecountsdueto detrimentaleffectof helperthreadsare
discardedandthebaselinecycle countsarerecordedinstead.The
total numberof the recordedcyclesprojectsthe performanceof
a perfectthrottling scheme,wherethe throttling algorithmwould
activatea helperthreadonly for thosesampleswith speedup.

Figure 9 depictsthe total cycles for the targetedloops, not
the entireprogram,for four differentconfigurations;Static trig-
ger with OS API, Dynamic trigger with OS API, Static trigger
with HW mechanism,andDynamictriggerwith HW mechanism,
whereeachbar is normalizedon the cyclesof the baseline.It is
apparentthatperfectthrottlingwouldprovidenon-trivial speedups
beyond the static trigger performance. The figure shows 4.8%
more gain with OS API and 1.2% gain with hardware mecha-
nism.Interestingly, thereexistscorrelationbetweentheSDvalues
in Table4 andthe impactof dynamicthrottling in Figure9. For
instance,BZIP2 hasthe largestSD valuefor cycle countsshow-
ing the most dynamicbehavior amongthe benchmarks,and the
amountof execution time differencewithout and with dynamic
throttling is alsothe largest. This impliesapplicationswith more
dynamic behavior could benefit more from dynamic throttling.
With perfectthrottling algorithmandlight-weight hardwaresyn-
chronizationmechanism,helperthreadswould provide asmuch
as20.6%wall-clockspeedupfor thetargetedloop in BZIP2. This
performancepotentialof dynamicthrottlingservesto motivatefu-
tureefforts for optimization.

5.3. Sampling granularity and sensitivity of dy-
namic behaviors

Currently, the granularityof the sample-basedtrigger is lim-
ited by thecostof the threadsynchronizationmechanisms.Even
at 1,500cycles,the hardwaresynchronizationcostremainsto be
morethantwice theL2 cachemisslatency. Consequently, thedy-
namic behavior of a programcan be exploited at rathercoarse-
grain. In this section,we show that the time variancein the dy-

¼
½|¾
¿|À
Á|Â
Ã|Ä

Å+ÆÈÇ

É+ÊÌË|ÍÌÎ Ï+ÐÌÑÈÒ Ó�ÔÈÕ ÖÈ× Ø�ÙÚXÛ�ÜÞÝ�ß à á�âäãhå�æèç é�êÞëíì|î�ïhðÞñ ò ó�ôöõÈ÷dø ùºú�ûýü

þ ÿ���
�� �
��

� 	

��

Figure 10. Percenta ge SD of L2 cache misses
for various sampling periods

namiccachemissbehavior becomesmorepronouncedastheres-
olutionof samplingof theprogramexecutionincreases,thusindi-
catingmuchmoreroomfor exploring dynamicthrottling at finer-
granularity. In turn, this motivatesfurtherhardwareoptimization
to reducesynchronizationcost.

In Figure 10, the sampling period is varied from 10000,
to 1000, 100, 50, and 10 loop iterations for the loop in
price out impl() of MCF andtheL2 cachemissesarepro-
filed for eachsampleusingEmonLite. Thegraphshows theper-
centageSD for thesedifferentsamplingperiods. The SD values
show a steadyincreasefrom 10000,to 1000,100, and50 itera-
tions. Oncethesamplingperiodreaches10 loop iterations,where
eachsampletakes 2K cycleson average,thedynamiccachemiss
behavior fluctuates,andthereis significantvariationin L2 cache
misscountsamongdifferentsamples.Suchdynamiccachebehav-
ior canonly becapturedatveryhigh samplingresolution.

6. Keyobservations

6.1. Impediments to speedup

Fromourexperiencewith helperthreads,we have learnedthat
to achieve significantspeedupon a realmachine,a numberof is-
suesthatarecorrelatedneedto beaddressed.

First, resourcecontentionsin thehyper-threadedprocessorim-
posetricky tradeoffs regardingwhen to fire off a helperthread,
how long to sustainthe helperthread,andhow frequentto reac-
tivate the helperthread. In an SMT machine,for helperthreads
to beeffective,potentialresourcecontentionwith themainthread
mustbe minimizedso asnot to degradethe performanceof the
mainthread.

Second,programexecutioncan exhibit dynamicallyvarying
behavior relativeto cachemissesandresourcecontentions.There-
fore, therearesometime phaseswherehelperthreadsmaynot be
helpful dueto, for instance,lack of cachemisses,MSHRs,cache
ports,or busbandwidth.Weobserve thatindiscriminatelyrunning
helperthreadssolelybasedon thecompile-timeplacedstatictrig-
gersis not alwaysdesirable.Dynamicthrottling of helperthread
invocationis importantfor achieving effective prefetchingbenefit

without sufferingpotentialslow down.
Third, to achieve more speedupwith helperthreadsrequires

monitoringandexploiting dynamicbehaviors of programexecu-
tion. This requireshand-shakingbetweenthemainthreadandthe
helperthreads. To do this effectively, having very light-weight
threadsynchronizationandswitchingmechanismsis crucial.

6.2. Essentialmechanisms

To overcometheseimpediments,we first needbettercompiler
algorithmsto constructmore judicious helper threadsto ensure
moretimely activationanddeactivation. In addition,thecompiler
canfurtheroptimizethehelperthreadto reducetheresourcecon-
tention,e.g. by exploiting occasionalstride-prefetchpattern,asa
form of strengthreduction,to acceleratehelperthreadexecution,
thuspotentiallyminimizingresourceoccupancy timeby thehelper
threads.

In addition,it is crucialto employ run-timemechanismsto cap-
turethedynamicprogrambehavior andthrottlethehelperthreads,
therebyfiltering outhelperthreadactivations,whichleadto waste-
ful resourcecontentionandunnecessaryprefetches.Sincethedy-
namic throttling mechanismsrequirevery fine-grainthreadsyn-
chronization,light-weightthreadsynchronizationsupportin hard-
wareis essential.

If provided with such compile-time and run-time support,
helperthreadingcan be a highly effective techniquefor dealing
with the ever increasingmemorylatency problemin workloads
thathave largeworking setsandthatsuffer from significantcache
misses,especiallythosemissesthatdefystridebasedprefetchers.

7. Relatedworks

In pre-execution techniques, constructing effective helper
threadsis the key to achieve performanceimprovement. It can
bedonein eithersoftwareor hardware. Software-controlled pre-
executionextractscodefor pre-executionfrom sourcecode[10,
12] or compiledbinaries[7, 11, 16, 25] using off-line analysis
techniques.This approachreduceshardwarecomplexity sincethe
hardwareis not involved in threadconstruction.In addition,off-
line analysiscanexaminelarge regionsof code,andcanexploit
informationaboutprogramstructureto aid in constructingeffec-
tive pre-executionthreads.In contrast,hardware-controlled pre-
execution[1, 6] extractscodefor pre-executionfrom dynamicin-
structiontracesusing trace-processinghardware. This approach
is transparent,requiringno programmeror compilerintervention,
andcanexaminerun-timeinformationsuchasdelinquency of load
instructionsin anon-linefashion.

8. Conclusions

In this paper, we show thathelperthreadscanindeedprovide
wall-clock speedupon real silicon. To achieve even moregain,
however, there are acutechallengesthat can greatly affect the
effectivenessof helper threads,suchas hardware resourcecon-
tention in the hyper-threadedprocessors,dynamic programbe-

havior, andthreadsynchronizationcost. In orderto benefitfrom
helperthreadsin a real system,certainrun-timemechanismsare
requiredto dynamicallythrottletheactivationof thehelperthreads
with very light-weight threadsynchronizationsupport. It is also
beneficialfor a compiler to generateefficient helperthreadsand
judiciouslyplacethestatictriggers.

We believe thereis muchheadroomfor helperthreadsin the
future. Theprocessorswould spendmoretime on memorystalls
dueto the ever-increasingmemorylatency. Moreover, the com-
piler will generatehighly optimizedhelperthreadsfor thehyper-
threadedprocessorsand target more cachemissesin the appli-
cations. For future work, our focus is on tackling the two im-
portant issuesidentified in this study; developmentof practical
dynamicthrottling framework andeven lighter-weight user-level
threadsynchronizationmechanisms.

9. Acknowledgments

TheauthorsthankGerolfHoflehnerandDanLaveryfor helpful
commentsonthecompilerissues,andShihjongKuofor providing
toolsto implementEmonLite.We alsothankJamisonCollins and
theanonymousreviewersfor their constructive commentson pre-
viousdraftsof this paper. DonaldYeungwassupportedin partby
NSFComputerSystemsArchitecturegrantCCR-0093110andin
partby NSFCAREERAwardCCR-0000988.

References

[1] M. Annavaram, J. M. Patel, and E. S. Davidson. Data
Prefetchingby DependenceGraphPrecomputation.In Pro-
ceedingsof the 28th Annual International Symposiumon
ComputerArchitecture, pages52–61, Goteborg, Sweden,
June2001.ACM.

[2] M. C. Carlisle.Olden:ParallelizingProgramswith Dynamic
DataStructureson Distributed-MemoryMachines.Techni-
cal ReportPhDThesis,PrincetonUniversity Departmentof
ComputerScience,June1996.

[3] R. S. Chappell,S. P. Kim, S. K. Reinhardt,andY. N. Patt.
SimultaneousSubordinateMicrothreading(SSMT). In Pro-
ceedingsof the 26th Annual International Symposiumon
ComputerArchitecture, pages186–195,Atlanta, GA, May
1999.ACM.

[4] T.-F. ChenandJ.-L. Baer. Effective Hardware-BasedData
Prefetchingfor High-PerformanceProcessors.IEEE Trans-
actionson Computers, 44(5):609–623,May 1995.

[5] T. M. Chilimbi, M. D. Hill, andJ.R.Larus.Cache-Conscious
StructureLayout. In Proceedingsof theACM SIGPLAN’99
Conferenceon ProgrammingLanguage Designand Imple-
mentation, pages1–12,Atlanta,GA, May 1999.ACM.

[6] J.Collins,D. Tullsen,H. Wang,andJ.Shen.DynamicSpec-
ulative Precomputation.In Proceedingsof the34th Annual
ACM/IEEE InternationalSymposiumon Microarchitecture,
pages306–317,Austin,TX, December2001.ACM.

[7] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes,Y.-F.
Lee,D. Lavery, andJ.P. Shen.Speculative Precomputation:

Long-rangePrefetchingof DelinquentLoads. In Proceed-
ings of the 28th Annual InternationalSymposiumon Com-
puter Architecture, pages14–25, Goteborg, Sweden,June
2001.ACM.

[8] J. L. Henning. SPECCPU2000: measuringCPU perfor-
mancein thenew millennium. IEEE Computer, July2000.

[9] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, andP. Roussel.TheMicroarchitectureof thePen-
tium 4 Processor. Intel TechnologyJournal,IssueonPentium
4 Processor, February2001.

[10] D. Kim andD. Yeung. DesignandEvaluationof Compiler
Algorithms for Pre-Execution. In Proceedingsof the 10th
InternationalConferenceon Architectural Supportfor Pro-
grammingLanguages and Operating Systems, pages159–
170,SanJose,CA, October2002.ACM.

[11] S.S.W. Liao,P. H. Wang,H. Wang,G.Hoflehner, D. Lavery,
andJ. P. Shen. Post-PassBinary Adaptationfor Software-
BasedSpeculative Precomputation. In Proceedingsof the
ACM SIGPLAN’02 Conferenceon ProgrammingLanguage
Design and Implementation, pages117–128,Berlin, Ger-
many, June2002.ACM.

[12] C.-K. Luk. ToleratingMemory Latency throughSoftware-
Controlled Pre-Execution in SimultaneousMultithreading
Processors.In Proceedingsof the28thAnnualInternational
Symposiumon ComputerArchitecture, pages40–51,Gote-
borg, Sweden,June2001.ACM.

[13] D. Marr, F. Binns,D. Hill, G. Hinton, D. Koufaty, J. Miller,
and M. Upton. Hyper-ThreadingTechnologyArchitecture
andMicroarchitecture.Intel Technology Journal, Volume6,
IssueonHyper-ThreadingTechnology, February2002.

[14] A. Moshovos,D. N. Pnevmatikatos,andA. Baniasadi.Slice-
Processors:An Implementationof Operation-BasedPredic-
tion. In Proceedingsof the15thInternationalConferenceon
Supercomputing, pages321–334,Sorrento,Italy, June2001.
ACM.

[15] T. Mowry. ToleratingLatency in Multiprocessorsthrough
Compiler-InsertedPrefetching.ACM Transactionson Com-
puterSystems, 16(1):55–92,February1998.

[16] A. Roth and G. S. Sohi. Speculative Data-Driven Multi-
threading. In Proceedingsof the 7th InternationalConfer-
enceon High PerformanceComputerArchitecture, pages
191–202,Monterrey, Mexico, January2001.IEEE.

[17] M. Smith. Tracingwith Pixie. TechnicalReportCSL-TR-
91-497,StanfordUniversity, Nov 1991.

[18] Y. Solihin,J.Lee,andJ.Torrellas.UsingaUser-Level Mem-
ory Threadfor CorrelationPrefetching.In Proceedingsof the
29th Annual InternationalSymposiumon ComputerArchi-
tecture, pages171–182,Anchorage,AK, May 2002.ACM.

[19] Y. SongandM. Dubois. AssistedExecution.TechnicalRe-
portCENG98-25,Departmentof EE-Systems,Universityof
SouthernCalifornia,Oct 1998.

[20] K. Sundaramoorthy, Z. Purser, andE. Rotenberg. Slipstream
Processors:Improving Both Performanceand Fault Toler-
ance. In Proceedingsof the 9th International Conference

on Architectural Supportfor ProgrammingLanguages and
Operating Systems, pages191–202,Cambridge,MA, May
2000.ACM.

[21] D. Tullsen, S. Eggers,and H. Levy. SimultaneousMulti-
threading:MaximizingOn-ChipParallelism.In Proceedings
of the 22ndAnnual InternationalSymposiumon Computer
Architecture, pages392–403,SantaMargheritaLigure, Italy,
June1995.ACM.

[22] D. M. Tullsen, J. L. Lo, S. J. Eggers,and H. M. Levy.
SupportingFine-GrainedSynchronizationon a Simultane-
ousMultithreadingProcessor. In Proceedingsof the5th In-
ternationalSymposiumon High-PerformanceComputerAr-
chitecture, pages54–58,Orlando,FL, January1999.IEEE.

[23] Intel Corporation. VTune Performance Analyzer.
http://developer.intel.com/software/products/VTune/
index.html.

[24] M. Weiser. ProgramSlicing. IEEETransactionsonSoftware
Engineering, SE-10(4),July1984.

[25] C. B. Zilles andG. Sohi. Execution-BasedPredictionUsing
Speculative Slices.In Proceedingsof the28thAnnualInter-
nationalSymposiumon ComputerArchitecture, pages2–13,
Goteborg, Sweden,June2001.ACM.

[26] C. B. Zilles andG. S. Sohi. Understandingthe Backward
Slicesof PerformanceDegradingInstructions. In Proceed-
ings of the 27th Annual InternationalSymposiumon Com-
puterArchitecture, pages172–181,Vancouver, Canada,June
2000.ACM.

