
Physical Experimentation with Prefetching Helper Threads
on Intels Hyper-Threaded Processors

Dongkeun Kim1,4, Steve Shih-wei Liao1, Perry H. Wang1, Juan del Cuvillo2

Xinmin Tian2, Xiang Zou3, Hong Wang1, Donald Yeung4, Milind Girkar2, John P. Shen1

Microarchitecture Research Lab1 Department of ECE
Intel Compiler Labs2, Desktop Platforms Group3 Institute for Advanced Computer Studies

Intel Corporation University of Maryland at College Park4

{dongkeun.kim, shih-wei.liao, perry.wang, juan.b.del.cuvillo, xinmin.tian, chris.zou,
hong.wang, milind.girkar, john.shen}@intel.com, yeung@eng.umd.edu

Abstract

Pre-execution techniques have received much attention as an
effective way of prefetching cache blocks to tolerate the ever-
increasing memory latency. A number of pre-execution techniques
based on hardware, compiler, or both have been proposed and
studied extensively by researchers. They report promising results
on simulators that model a Simultaneous Multithreading (SMT)
processor. In this paper, we apply the helper threading idea on
a real multithreaded machine, i.e., Intel Pentium 4 processor with
Hyper-Threading Technology, and show that indeed it can pro-
vide wall-clock speedup on real silicon. To achieve further per-
formance improvements via helper threads, we investigate three
helper threading scenarios that are driven by automated compiler
infrastructure, and identify several key challenges and opportu-
nities for novel hardware and software optimizations. Our study
shows a program behavior changes dynamically during execution.
In addition, the organizations of certain critical hardware struc-
tures in the hyper-threaded processors are either shared or parti-
tioned in the multi-threading mode and thus, the tradeoffs regard-
ing resource contention can be intricate. Therefore, it is essential
to judiciously invoke helper threads by adapting to the dynamic
program behavior so that we can alleviate potential performance
degradation due to resource contention. Moreover, since adapting
to the dynamic behavior requires frequent thread synchronization,
having light-weight thread synchronization mechanisms is impor-
tant.

1. Introduction

As the speed gap between processor and memory system in-
creases, a processor spends significant amount of time on mem-
ory stalls waiting for the arrival of cache blocks. To tolerate the
large memory latency, there have been a plethora of proposals for
data prefetching [4, 15]. Recently, a novel thread-based prefetch-

ing technique, called pre-execution, has received much attention in
the research community [1, 3, 6, 7, 10, 11, 12, 14, 16, 18, 19, 20,
25]. Compared to prediction-based prefetching techniques, pre-
execution directly executes a subset of the original program in-
structions, called a slice [24], on separate threads alongside the
main computation thread, in order to compute future memory ac-
cesses accurately. The prefetch threads run ahead of the main
thread and trigger cache misses earlier on its behalf, thereby hiding
the memory latency. To be effective, the pre-execution techniques
require construction of efficient helper threads and processor-level
support to allow multiple threads to run concurrently.

Since manual construction of helper threads is cumbersome
and error-prone, it is desirable to automate this process. Re-
searchers have proposed a number of systems to generate helper
threads automatically. Collins et al. [6] proposed a hardware
mechanism to construct helper threads at run-time using a post-
retirement queue. Liao et al. [11] developed a post-pass binary
adaptation tool to analyze an existing application binary, extract
helper threads, and form an augmented new binary by attaching
the helper threads to the original binary. Kim and Yeung [10]
proposed a compiler framework to generate helper threads at the
program source level. All these studies have evaluated the helper
threading idea on simulation-based environments that model SMT
processors [21] and demonstrated that it is a promising data
prefetching technique.

With the advent of Intel Pentium R© 4 processor with Hyper-
Threading Technology [9, 13], a commercially available multi-
threaded processor supporting two logical processors simultane-
ously, it is possible to evaluate the helper threading idea on a phys-
ical SMT machine. In this paper, we develop a new optimization
module in the Intel pre-production compiler to construct helper
threads automatically, and evaluate the helper threading idea on
the Intel Pentium 4 processor with Hyper-Threading Technology.
To the best of our knowledge, there has been no published work
that implements and experiments with helper threads on a real

multithreaded processor. We provide the insights gained from
our experience and discuss the important ingredients to achieve
speedup on such a physical system. Although supporting SMT,
the hyper-threaded processor does have unique implementation as-
pects that are distinct from the proposed design of a research SMT
processor [21]. In this study, we find these unique aspects directly
influence the tradeoffs for applying helper threads.

To improve the performance of an application program with
helper threads, we observe that several key issues need to be ad-
dressed. First, the program behavior changes dynamically; for in-
stance, even the same static load incurs different number of cache
misses for different time phases. Therefore, a helper thread should
be able to detect the dynamic program behavior at run-time. Sec-
ond, since some of the hardware structures in the hyper-threaded
processors are shared or partitioned in the multi-threading mode,
resource contention can be an issue, and consequently, helper
threads need to be invoked judiciously to avoid potential perfor-
mance degradation due to resource contention. Lastly, we observe
that the dynamic program behavior changes at a fine granularity.
To adapt to the dynamic behavior, helper threads need to be acti-
vated and synchronized very frequently. Therefore, it is important
to have low overhead thread synchronization mechanisms.

Helper threading has a very unique characteristic. Compared to
traditional multi-threading where every thread should be executed
and committed in pre-defined order to guarantee the correctness of
program execution, helper threads only affect the performance of
the application. Therefore, a helper thread does not have to be al-
ways executed and can be deactivated whenever the helper thread
does not improve the performance of the main computation thread.
This property of helper threads provides interesting opportunities
for applying various dynamic optimizations. In particular, since
the dynamic program behaviors such as cache misses are gener-
ally micro-architectural and not available at compile-time, they
can be most effectively captured and adapted to when monitored
at run-time. In this paper, we demonstrate that, in order to obtain
significant benefit from helper threading, it is essential to employ
run-time mechanisms to throttle helper threads dynamically at a
fine granularity.

The rest of the paper is organized as follows. Section 2 presents
the software infrastructures that enable our experiments. Sec-
tion 3 describes our experimental framework and Section 4 de-
tails the three helper threading scenarios. Section 5 discusses the
experimental results on an Intel Pentium 4 processor with Hyper-
Threading Technology. Section 6 summarizes the key observa-
tions gained from the experiments. Section 7 discusses the related
works and Section 8 concludes.

2. Software infrastructures for experiments

We develop two software infrastructures for our experiments.
Section 2.1 describes the design of an optimizing compiler module
to automatically construct helper threads and Section 2.2 presents
user-level library routines for light-weight performance monitor-
ing.

2.1. Compiler to construct helper threads

For pre-execution techniques to be widely used, it is neces-
sary to automate the helper thread construction process. In this
section, we describe the design of an optimization module built
in the Intel compiler infrastructure. In the compiler, the helper
thread construction consists of several steps. First, the loads that
incur a large number of cache misses and also account for a large
fraction of the total execution time are identified. After selection
of an appropriate loop level surrounding the cache-missing loads,
the pre-computation slices within that loop boundary are extracted
and the live-in variables are identified as well. Finally, appropri-
ate trigger points are placed in the original program and the helper
thread codes are generated.

2.1.1. Delinquent load identification. The first step in
the helper thread generation is to identify the top cache-missing
loads, known as delinquent loads, through profile feedback. This
is achieved by running the application on the Intel VTuneTM per-
formance analyzer [23] to collect the clock cycles and L2 cache
misses. The application program is profiled with the same input
set as is used in the later experiments. However, we find differ-
ent input sets do not usually affect the set of the identified delin-
quent loads. After reading in the VTune profiles, the compiler
back-end optimizer correlates the data with its intermediate repre-
sentation using source line numbers. From analyzing the profile
information, the compiler module identifies the delinquent loads
and also keeps track of the cycle costs associated with those delin-
quent loads, i.e., memory stall time. Finally, the delinquent loads
that account for a large portion of the entire execution time are
selected to be targeted by helper threads.

2.1.2. Loop selection. Once the target delinquent loads are
identified, the compiler module forms a region within which the
helper thread will be constructed. Previous research has shown
that delinquent loads most likely occur within a heavily traversed
loop nest [10, 11]. Thus, loop structures can naturally be used for
picking an appropriate region. As to be further elaborated in Sec-
tion 3.1.3, the cost of thread activation and synchronization in a
real system is in the range of thousands of cycles. Therefore, a
key criterion in selecting a proper loop candidate is to minimize
the overhead of thread management. One goal is to minimize the
number of helper thread invocations, which can be accomplished
by ensuring the trip count of the outer-loop that encompasses the
candidate loop is small. A complementary goal is to ensure that
the helper thread, once invoked, runs for an adequate number of
cycles in order to amortize the thread activation cost. Therefore, it
is desirable to choose a loop that iterates a reasonably large number
of times. In our loop selection algorithm, the analysis starts from
the innermost loop that contains the delinquent loads and keeps
searching for the next outer-loop until the loop trip-count exceeds
a threshold (currently one thousand iterations) and the next outer-
loop’s trip-count is less than twice the trip-count of the currently
processed loop. On the other hand, when the analysis reaches the

outermost loop within the procedure boundary, the search ends and
the loop is selected. The loop trip-count information is collected
via VTune’s instruction count profile. We observe this simple al-
gorithm is effective, especially in the presence of the aggressive
function inlining performed by the compiler.

2.1.3. Slicing. Next, the compiler module identifies the in-
structions to be executed in the helper threads and this process
is enabled by slicing. We perform program slicing that is simi-
lar to backward slicing shown in [26]. Within the selected loop,
the compiler module starts from a delinquent load and traverses
the dependence edges backwards. To construct efficient and light-
weighted helper threads, only the statements that affect the address
computation of the delinquent load, including the change of the
control flow, are selected as a slice and everything else is filtered
out. Since helper threads should not affect the correctness of the
main thread, all the stores to heap objects or global variables are
removed from the slice. Once slicing is completed for each indi-
vidual delinquent load, the extracted slices are merged to form a
single thread of instruction sequence to target all the delinquent
loads within the same loop boundary.

2.1.4. Live-in variable identification. Once a helper thread
is formed, the live-in variables to the helper thread are identified.
Through analysis, the variables used in the selected loop are di-
vided into two groups: those that have upwards-exposed reads and
those that are privatizable. The variables in the former group are
selected as live-ins and will be explicitly passed through global
variables that are declared solely for the use of helper threads.

2.1.5. Code generation. After the compiler analysis phases,
the constructed helper threads are attached to the application pro-
gram as a separate code. In addition, the codes to create, schedule,
and invoke the helper thread are inserted as well. In this study, two
static thread invocation strategies are investigated. One is a loop-
based trigger where a helper thread is invoked at the entrance of the
targeted loop. The other is a sample-based trigger where a helper
thread is invoked once every few loop iterations of the targeted
loop. Section 4 provides more details about our thread invocation
schemes. For a given application, multiple helper threads can be
constructed, each targeting different delinquent loads at different
loop regions. However, since there are only two logical processors
on the Pentium 4 hyper-threaded processor, it is essential to reduce
the thread switching overhead. To do so, the compiler creates only
one OS thread at the beginning of the program and recycles the
thread to target multiple loops. The created helper thread enters
a dispatcher loop and sleeps if there is no helper task to dispatch
to. Whenever the main thread encounters a trigger point, it first
passes the function pointer of the corresponding helper thread and
the live-in variables, and wakes up the helper thread. After be-
ing woken up, the helper thread indirectly jumps to the designated
helper thread code region, reads in the live-ins, and starts execu-
tion. When the execution ends, the helper thread returns back to
the dispatcher loop and goes to sleep again.

2.2. EmonLite: User-level library routines for per-
formance monitoring

In order to ensure a helper thread can adapt to the dynamic
program behavior, we need a light-weight mechanism to monitor
such dynamic events as cache misses and at very fine sampling
granularity. Some existing tools, such as pixie [17], instrument
the program code to use cache simulator to simulate the dynamic
behavior of a program. However, this methodology may not ac-
curately reflect the actual program behavior on a physical system
and often slows down the program execution. To remedy these
issues, we introduce a library of user-level routines, called Emon-
Lite, which performs light-weight profiling through the direct use
of the performance monitoring events supported on the Intel pro-
cessors. Provided as a library of compiler intrinsics, EmonLite
allows a compiler to instrument at any location of the program
code to directly read from the Performance Monitoring Counters
(PMCs). Therefore, event statistics such as clock cycles or L2
cache misses can be collected for a selected code region at a very
fine granularity with high accuracy and low overhead. The Intel
processors support performance monitoring of over 100 different
micro-architectural events associated with branch predictor, trace
cache, memory, bus, and instruction events. Compiler-based in-
strumentation via EmonLite enables collection of the chronology
of certain instruction’s dynamic events for a wide range of appli-
cations. Such profiling infrastructure can be leveraged to support
dynamic optimizations such as dynamic throttling of both helper
thread activation and termination.

2.2.1. EmonLite vs. VTune. The VTune performance an-
alyzer can be used to sample various performance monitoring
events over the entire program execution. It provides the pro-
file data ranging in scope from process, to module, procedure,
source-line, and even assembly instruction level. However, VTune
provides only a summary of sampling profile for the entire pro-
gram execution and therefore, it is difficult to extract the dynamic
chronological behavior of a program from VTune’s profile. In con-
trast, EmonLite provides the chronology of the performance moni-
toring events and thus, it enables analysis of time-varying behavior
of the workload at a fine granularity and can lead to dynamic adap-
tation and optimization. In addition, EmonLite is a library of user-
level routines and can be directly placed in the program source
code to discriminately monitor the dynamic micro-architectural
behaviors for the judiciously selected code regions. Lastly, while
VTune’s sampling based profiling relies on the buffer overflow of
the PMCs to trigger an event exception handler registered at OS,
EmonLite reads the counter values directly from the PMCs by ex-
ecuting four assembly instructions. Consequently, EmonLite is
extremely light-weight; it rarely slows down the user program pro-
vided that the profiling sampling interval (i.e., how frequently the
PMCs are read) is reasonably sized.

2.2.2. Components of EmonLite. The EmonLite library pro-
vides two compiler intrinsics that can be easily inserted into a user

while (arcin) {
/* emonlite_sample() */
if (!(num_iter++ % PROFILE_PERIOD)) {
cur_val = readpmc(16);
L2miss[num_sample++] = cur_val - prev_val;
prev_val = cur_val;

}

tail = arcin->tail;
if (tail->time + arcin->org_cost > latest) {
arcin = (arc_t *) tail->mark;
continue;

}
...

}

Figure 1. Example of EmonLite code instru-
mentation - price out impl() of MCF.

program code. One of the routines, called emonlite begin(),
initializes and programs a set of EMON-related Machine Spe-
cific Registers (MSRs) to specify the performance monitoring
events for which the profiles are collected. This library routine
is inserted at the beginning of the user program and is executed
only once for the entire program execution. The other intrin-
sic, called emonlite sample(), reads the counter values from
the PMCs and is inserted in the user code of interest. Since the
PMC provides performance event information for each logical pro-
cessor, to ensure accuracy of profiling, the target application is
pinned to a specific logical processor via OS affinity API, such as
SetThreadAffinityMask() in Win32 API.

2.2.3. Implementation issues. Automatic instrumentation of
EmonLite library routines is also implemented in the Intel pre-
production compiler. For a selected code region, the following
steps are taken to generate the chronology of performance moni-
toring events.
Step 1. Same as previously described compiler analysis phases,
the delinquent loads are first identified and appropriate loops are
selected.
Step 2. The compiler inserts the instrumentation codes into the
user program. In the main() function of the user program, it
inserts emonlite begin() to initialize EmonLite and set up
corresponding PMCs.
Step 3. For each loop that is identified in Step 1, the com-
piler inserts codes to read the PMC values once every few iter-
ations. Figure 1 shows how instrumentation codes are inserted
in a loop in price out impl() of MCF, a benchmark in the
SPEC CINT2000 suite. By varying the profiling interval, PRO-
FILE PERIOD, the granularity and sensitivity of profiling can be
easily adjusted.

2.2.4. Example usage of EmonLite: Chronology of L2
cache miss event. Figure 2 depicts the chronology of the L2
cache miss events for the same loop used in Figure 1. The graph
illustrates the dynamic behavior of the L2 cache at a very fine

Table 1. System configuration
CPU 2.66GHz Intel Pentium 4 with Hyper-

Threading Technology
L1 Trace cache 12K micro-ops, 8-way set associative

6 micro-ops per line
L1 Data cache 16KB, 4-way set associative

64B line size, write-through
2-cycle Integer, 4-cycle FP

L2 Unified cache 512KB, 8-way set associative
64B line size, 7-cycle access latency

DTLB 64 entries, fully associative, map 4K page
Load buffer 48 entries
Store buffer 24 entries
Reorder buffer 128 entries
OS Windows XP Professional, Service Pack 1

granularity, i.e., 10 loop iterations per sample (around 2K cycles
on average). In the figure, it is obvious that there are time frag-
ments where the main thread incurs small or even no L2 cache
misses. If a helper thread were launched for a period without any
cache misses, it could potentially degrade the performance during
this time interval due to hardware resource contention. This ob-
servation motivates certain mechanisms to control helper threads
dynamically, which is further discussed in Section 5.2.

Figure 3 illustrates another example of chronology at a much
coarser granularity for the same loop. The number of L2 cache
misses is collected for every 100,000 iterations; each profiling pe-
riod taking about 14M cycles on average. This figure shows the
EmonLite profile for the entire program execution and a phase be-
havior of L2 cache misses for the program is evident.

3. Experimental framework

Our experiments are performed on a real physical system us-
ing a Pentium 4 Processor with Hyper-Threading Technology. In
this section, we present the hardware configuration and the bench-
marks used in the experiments.

3.1. Hardware System

3.1.1. System configuration. As shown in Table 1, we use
a system with a 2.66GHz Intel Pentium 4 processor with Hyper-
Threading Technology [9, 13]. The system contains one physi-
cal processor, which supports two logical processors simultane-
ously. For the memory subsystem, the processor contains a trace
cache for instructions and a 16KB data cache at the first level, and
a 512KB unified cache at the second level. The processor im-
plements a hardware stride prefetcher for prefetching data cache
blocks.

3.1.2. Hyper-threaded processors. Unlike a proposed
SMT processor [21] where most, if not all, micro-architectural
structures are shared between the logical processors, the micro-
architectural resources in the Intel hyper-threaded processors are
managed differently. As detailed in [13], a hyper-threaded pro-

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Sample ID (Sampling Period = 10 loop iterations)

L

2
C

ac
h

e
M

is
se

s

Figure 2. Chronology of L2 cache miss events at a fine granularity - price out impl() of MCF

0

40

80

120

160

200

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001

Sample ID (Sampling Period = 100,000 loop iterations)

#
L

2
C

ac
h

e
M

is
se

s
(x

10
00

)

Figure 3. Coarse-grain phase behavior of L2 cache miss events - price out impl() of MCF

cessor dynamically operates in one of two modes; in ST (Single
Threading) mode, all on-chip resources in Table 1 are given to a
single application thread whereas, in MT (Multi-Threading) mode,
these resources are shared, duplicated or partitioned between the
two logical processors. As shown in Table 2, structures like caches
and execution units are shared between the two logical processors,
very much like resource sharing on a research SMT processor [21].
On the other hand, structures like the reorder buffer are evenly
hard-partitioned to prevent one logical processor from taking up
the whole resource. In addition, micro-architectural resources like
the ITLB and the return stack buffer are replicated for each logical
processor. The transition between ST and MT modes occurs auto-
matically when an application thread on a given logical processor
either suspends or gets reactivated. In particular, such transition
is primarily due to synchronization between application threads
running on the logical processors.

3.1.3. Thread synchronization mechanisms.
In this paper, we compare two mechanisms for invoking
and suspending helper threads. First, the Win32 API,
SetEvent() and WaitForSingleObject(), can be used
for thread management. When an active thread calls
WaitForSingleObject(), the Windows scheduler waits un-
til the CPU utilization of the corresponding logical processor falls
below 10%. Only then does the OS deschedule the suspended

Table 2. Hardware management in Intel hyper-
threaded processors
Shared Trace cache, L1 D-cache, Execution units

L2 cache, Global history array, Allocator
Microcode ROM, Uop retirement logic
IA-32 instruction decode, DTLB
Instruction scheduler, Instruction fetch logic

Duplicated Per logical processor architecture state
Instruction pointers, Rename logic, ITLB
Streaming buffers, Return stack buffer
Branch history buffer

Partitioned Uop queue, Memory instruction queue
Reorder buffer, General instruction queue

thread and trigger a mode change from MT mode to ST mode.
The latency between the moments the thread calls for suspension
to the occurrence of the mode transition is non-deterministic and
it is between 10K to 30K cycles.

To lower the thread switching and synchronization cost, we
prototype a hardware mechanism that implements user-level light-
weight thread synchronization instructions similar to the lockbox
primitives described in [22]. This hardware mechanism is actu-
ally implemented in real silicon as an experimental feature. In our
hardware synchronization mechanism, a thread can issue a single

0

20

40

60

80

100

MCF ART BZIP2 MST EM3D

P
er

ce
n

ta
g

e
(%

)
Cycle L2 miss

Figure 4. VTune profiles: cycles and L2 cache
misses associated with delinquent loads

instruction to suspend and can directly cause the mode transition
from MT mode to ST mode. Conversely, another thread can issue
a single instruction to wake up a suspended thread and cause ST to
MT mode transition. Using these direct hardware synchronization
primitives, thread suspension takes approximately 1,500 cycles,
which achieves one order of magnitude reduction as compared to
the cost of OS API. Moreover, this hardware mechanism is en-
tirely transparent to the OS. In Section 5, we evaluate the impact
of thread synchronization cost for a number of helper threading
scenarios.

3.2. Benchmarks

To decide the benchmarks used in our experiments, we first run
entire SPEC CPU2000 benchmark suite [8] on VTune and collect
the cycle and L2 cache miss profiles. Then, we select those appli-
cations that have significant number of cycles attributed to the L2
cache misses, including MCF and BZIP2 from SPEC CINT2000
suite, and ART from SPEC CFP2000 suite. The reference input
sets are used for both profile runs and experiments. In addition,
we also pick MST and EM3D from Olden benchmarks [2] for the
same reason.

Memory latency tolerance has long been tackled by both
micro-architecture techniques and advanced compiler optimiza-
tions. For example, the Intel Pentium 4 processor employs a
hardware stride prefetcher. In addition, the production compiler
can perform various optimizations to reduce the number of cache
misses such as cache-conscious code or data layout and access op-
timizations [5]. Our objective is to tackle those cache misses that
remain even after these hardware and compiler techniques are ap-
plied, and to achieve additional speedup by using helper threads.
The benchmarks are compiled with the best compiler options (-
O3 -Qipo -QxW) in the most recent version of the Intel compiler.
Then, VTune is used to identify the candidate loads. Figure 4
shows the percentage of the L2 cache misses that are associated
with the targeted loads over the total L2 cache misses. It also
shows the percentage of the exposed memory stall cycles due to
the cache misses over the entire execution time. For every appli-
cation in the figure, we observed fewer than five loads contribute
to a large fraction of the total L2 cache misses, i.e., 83.5% on aver-

0.99

0.995

1

1.005

1.01

1.015

1.02

MCF ART BZIP2 MST EM3D

N
o

rm
al

iz
ed

E
xe

cu
tio

n
T

im
e

Figure 5. Normalized execution time without
thread pinning (no helper threading)

age for top five delinquent loads. The percentage of memory stall
cycles indicates an upper bound on the performance improvement
that is achievable with perfect data prefetching for the targeted
delinquent loads.

3.3. Baseline

In the hyper-threaded processors, the Windows OS periodically
reschedules a user thread on different logical processors. This
involves the overhead of OS job-scheduling and can incur more
cache misses if multiple physical processors are employed in one
system. In the context of helper threading, a user thread and its
helper thread, as two OS threads, could potentially compete with
each other to be scheduled on the same logical processor. In
addition, on a multiprocessor configuration with multiple physi-
cal processors, an application thread and its helper thread could
also be scheduled to run on different physical processors. In this
case, without shared cache, the prefetches from a helper thread
will not be beneficial to the application thread. In order to avoid
these undesirable situations, the compiler adds a call to the Win32
API, SetThreadAffinityMask(), to manage thread affinity
at the beginning of the application thread to pin the main compu-
tation thread to a particular logical processor. This is our baseline
configuration to evaluate helper threading. Similarly, the helper
thread, if present, is pinned to the other logical processor.

Figure 5 shows the effect of thread pinning on the performance
of the baseline (no helper threading) binaries. Each bar represents
the execution time without thread pinning, which is normalized
on the execution time with thread pinning. Clearly, thread pin-
ning slightly improves the single thread performance in the hyper-
threaded processors. This is because thread pinning eliminates
some overhead of OS job scheduling. Throughout the rest of the
paper, we use the execution time with thread pinning as the base-
line reference performance numbers.

4. Helper threading scenarios

We introduce three helper threading scenarios in this paper.
They differ from each other with regard to how the trigger place-
ment is tailored in the code and when the helper threads are trig-

gered at run-time. In this section, we illustrate the interesting
tradeoffs and the insights.

4.1. Static: Loop-based trigger

The first helper threading scenario is called Loop-based Static
Trigger. In this scenario, a helper thread is activated at the en-
trance point of the targeted loop. Once the helper thread is woken
up, it runs through all iterations of the loop without any further in-
termediate synchronization. In other words, the inter-thread syn-
chronization only occurs once for every instance of the targeted
loop.

Since this approach implements the trigger placement at the
well-defined program structures, it is simple to implement. It can
be useful if the thread synchronization cost is high. However,
due to the lack of intermediate synchronization between the main
thread and the helper thread throughout the computation of the
targeted loop, the helper thread can either run too far ahead of the
main thread and pollute the cache, or run behind the main thread
and waste computation resources which could be more effectively
used by the main thread.

4.2. Static: Sample-based trigger

To avoid run-away helper threads or run-behind helper threads,
it is necessary to perform inter-thread synchronization at finer
granularity than the size of the targeted loop. This motivates the
second helper threading scenario, called Sample-based Static Trig-
ger, where a helper thread is invoked once for every few iterations
of the targeted loop. The number of loop iterations between two
consecutive helper thread invocations becomes the sampling pe-
riod. In this approach, once the helper thread is activated, it exe-
cutes either for the number of loop iterations equal to the size of
the sampling period, or until it reaches the termination of the loop.

Since the helper threads in this scenario are invoked more fre-
quently than the loop-based static trigger, the effectiveness is more
sensitive to the thread synchronization cost. Furthermore, this
scenario requires additional code to be instrumented in the tar-
geted loop to check how far the main thread or the helper thread
has executed within the sampling period iterations. In effect, this
approach relies upon the sampling period as the synchronization
boundary to frequently cross-check relative progress between the
helper thread and the main thread. The size of the sampling period
binds the distance by which a helper thread can run ahead of or be-
hind the main thread. Therefore, the effectiveness of this approach
depends on the choice of the sampling period at compile-time.

4.3. Dynamic trigger

As illustrated in Figure 2, a program’s dynamic behavior varies
at different chronological phases. Consequently, helper threads
may not always be beneficial. Even when the main thread suf-
fers long latency cache misses, the effectiveness of helper threads
still depends on a variety of resource related issues such as the
availability of execution units, occupancy of the reorder buffer,

Table 3. Statistics for sample-based trigger
Application Procedure Sampling #

Name Period Samples
MCF refresh potential 100 2422827
MCF price out impl 1000 1370258
ART match 1000 1672740

BZIP2 sortIt 1000 118201
MST BlueRule 100 44985

EM3D all compute 200 20000

the number of cache misses, memory bus utilization, or fill buffer
(i.e., Miss Status Holding Register or MSHR) usage.

To adapt to the dynamic program behavior and avoid activat-
ing a helper thread when it is not needed, we evaluate a simple
dynamic helper threading scenario, which is based on the sample-
based trigger presented in Section 4.2. However, rather than in-
voking a helper thread for every sample instance, the main thread
dynamically decides whether or not to invoke a helper thread for a
particular sample period. Effectively, this is a dynamic throttling
scheme which dynamically monitors the relative progress and re-
source contentions between the main thread and its helper thread
and then applies judicious control on both activation and termina-
tion of the helper thread.

5. Performance evaluation

We experiment with compiler-generated helper threads on real
silicon, and present the performance results and analysis from the
experiments. Section 5.1 evaluates the two static trigger scenarios
and Section 5.2 investigates the performance potential of the dy-
namic trigger scenario. Section 5.3 gauges the impact of thread
synchronization cost and discusses the need for lighter-weight
mechanisms.

5.1. Evaluation of static trigger

5.1.1. Statistics for sample-based trigger. To evaluate the
sample-based static trigger scenario, the sampling period should
be determined a priori. The compiler instruments each targeted
loop with EmonLite library routines to profile the chronology of
cycles and L2 cache misses. The sampling period is adjusted such
that each sample takes between 100K and 200K cycles on average.
Recall that the Windows API-based thread synchronization mech-
anisms cost between 10K and 30K cycles, whereas the prototype
hardware-based synchronization mechanism takes about 1,500 cy-
cles. Table 3 lists the procedure name that contains the targeted
loop, the sampling period in loop iterations, and the number of
samples over the entire program execution for each selected loop.
In each benchmark except MCF, a loop that accounts for the largest
fraction of the memory stall time is selected. In MCF, two loops
that largely suffer from the cache misses are chosen.

5.1.2. Speedup results. Figure 6 reports the speedup results of
the two static trigger scenarios. For each scenario, we compare the

-30

-25

-20

-15

-10

-5

0

5

10

MCF ART BZIP2 MST EM3D

S
p

ee
d

u
p

(%
)

Loop-based trigger w/ OS API(LO) Loop-based trigger w/ HW mechanism(LH)

Sample-based trigger w/ OS API(SO) Sample-based trigger w/ HW mechanism(SH)

Figure 6. Speedup of static trigger

performance of two thread synchronization mechanisms, heavy-
weight Windows API and light-weight hardware mechanism. The
speedup is for the entire program execution, not just for the tar-
geted loop. For each application, we show speedups in percentage
for four different configurations, LO, LH, SO, and SH as shown in
the figure.

The difference in performance impact by the two thread syn-
chronization mechanisms is rather pronounced. On one hand, for
the loop-based trigger, i.e., LO vs. LH, the light-weight hardware
thread synchronization mechanism only provides 1.8%, on aver-
age, more speedup than OS API. This is primarily due to the tar-
geted loops and their corresponding helper threads run for many
iterations before the next synchronization at loop boundary, thus
the startup synchronization cost is much less significant, even as-
suming the cost of OS API. On the other hand, for the sample-
based trigger, i.e., SO vs. SH, the hardware thread synchroniza-
tion mechanism achieves 5.5% additional gain on average. Since
the helper threads are activated more frequently in sample-based
trigger scenario, the effectiveness is much more sensitive to the
thread synchronization overhead. The heavy-weight OS API in-
troduces significant overhead on the main thread and potentially
causes helper thread to be activated out of phase, thus resulting in
ineffectual pre-computation which not only runs behind but also
takes away critical processor resources from the main thread. This
explains the slowdown in SO for most benchmarks except MCF,
which suffers from lots of long latency cache misses.

Comparing the performance of loop-based trigger and sample-
based trigger, the loop-based trigger performs slightly better than
sample-based trigger for the current sampling period and thread
synchronization cost. Using OS API for thread synchronization,
i.e., LO vs. SO, the loop-based trigger outperforms the sample-
based trigger for all applications except EM3D. In EM3D, with
the loop-based trigger, the helper thread runs away from the main
thread due to the lack of synchronization, and the memory ac-
cesses in the run-away helper thread causes excessive cache pol-
lution. However, the sample-based trigger can effectively prevent
cache thrashing, thereby providing better performance for EM3D.
For the other applications, since the sample-based trigger invokes

0

20

40

60

80

100

120

MCF ART BZIP2 MST EM3D

N
o

rm
al

iz
ed

L
2

C
ac

h
e

M
is

se
s

Main thread Helper thread

Figure 7. Cache miss coverage: Loop-based
trigger with HW synchronization mechanism

helper threads more frequently, the heavy-weight overhead of call-
ing OS API significantly affects the main threads performance.

On the other hand, if the light-weight hardware thread syn-
chronization mechanism is employed, i.e., LH vs. SH, the per-
formance with the sample-based trigger is comparable to that of
the loop-based trigger. In MCF and BZIP2, there is little dif-
ference between these two scenarios. On the other hand, since
the targeted loop in ART consists of only 12 instructions, instru-
mentation code accounts for a relatively large portion of the loop,
resulting in the performance degradation with the sample-based
trigger. In MST, the sample-based trigger performs worse due to
both the thread synchronization cost and the code instrumentation
overhead. Though a reduction by an order of magnitude from OS
API’s overhead, even at 1,500 cycles, the hardware synchroniza-
tion still takes more than 2 times as long as the latency to serve
a cache miss to the main memory. As the thread synchronization
cost becomes even lower, the sample-based trigger is expected to
be more effective.

5.1.3. Dynamic behavior of helper threading. In order
to further shed insights on the tradeoffs of helper thread, we in-
vestigate the dynamic behaviors of helper thread effectiveness, in
terms of reduction in both cache miss coverage and cycle count
improvement.

Figure 7 illustrates the L2 cache miss coverage based on the
VTune profile for the loop-based static trigger with hardware
thread synchronization mechanism (configuration LH from Fig-
ure 6). In the graph, we show, within the targeted loop, the cache
miss counts incurred by both the delinquent loads in the main
thread and prefetches in the helper thread for those loads. Those
cache miss counts are normalized on that of the baseline for the
same set of delinquent loads. The data clearly indicates that helper
threading can achieve significant reduction in cache misses in the
main thread, ranging from 25.3% in ART to 60.4% in EM3D. In
EM3D, helper threads eliminate a large portion of L2 cache misses
for the targeted loads. However, they significantly increase the
number of cache misses for the non-targeted loads, which is not
shown in Figure 7, thereby degrading the overall performance.

In addition, this graph also reveals some inefficiency of the

0

150

300

450

600

750

900

1 11 21 31 41 51 61 71 81 91

Sample ID

#
L

2
C

ac
h

e
M

is
se

s

Baseline Helper Threading

0

80

160

240

320

400

1 11 21 31 41 51 61 71 81 91

Sample ID

C
yc

le
s

(x
10

00
)

Baseline Helper Threading

(a) L2 cache miss event

(b) Cycle event

Figure 8. Dynamic behavior of performance
events with and without helper threading

static trigger helper threading scenarios. First, in all benchmarks
except for BZIP2, the percentage of the cache misses covered by
the helper thread is not close to 100%. This indicates that the
helper thread sometimes runs behind the main thread and thus,
the helper thread should not be activated for certain period. Sec-
ond, in ART, BZIP2, MST, and EM3D, the sum of the two bars
exceeds 100%. This indicates that, for certain time phases, the
helper thread runs too far ahead of the main thread and incurs
cache thrashing. During these time phases when the helper threads
are not effective, dynamic throttling can be introduced to either
suspend an on-going helper thread or prevent activating the next
helper thread instance.

Figure 8 shows the EmonLite-based chronology of the L2
cache miss events and the cycle events of BZIP2 for 100 samples
using a sample-based static trigger scenario. Each graph depicts
two sets of data, one without helper thread (Baseline), and the
other with helper thread. Comparing the patterns in Figure 8(a)
and 8(b), there exists strong correlation between the L2 cache
miss event and the cycle event, which implies that those targeted
loads triggering the L2 cache misses are likely critical. However,
when helper threading is applied, there are some sample phases
when L2 cache miss reductions do not convert to similar reduc-
tions in cycle counts. For instance, between sample ID of 71 and

Table 4. Percentage SD statistics
Application % SD(cycle) % SD(L2 miss)

MCF (refresh) 44.80% 39.45%
MCF (implicit) 44.50% 50.41%

ART 17.14% 3.79%
BZIP2 61.91% 96.83%
MST 30.59% 30.86%

EM3D 46.05% 44.72%

88, even though the number of L2 cache misses is reduced with
helper threads, the cycle counts actually increase. Therefore, it
would be helpful to detect the time phases when the application
performance is degraded so that helper threads do not get activated
during those phases. This observation leads us to consider cer-
tain run-time mechanisms to dynamically throttle helper threads,
a topic to be discussed in the next section.

5.2. Evaluation of dynamic trigger

In this section, we explore the potential of dynamic throttling
of helper threads assuming perfect throttling mechanisms.

5.2.1. Quantifying dynamic behavior. To quantify the dy-
namic behavior of the targeted loops, using the same sampling pe-
riod shown in Table 3, we profile cycle and L2 cache miss events
for each sample without helper threading. Then, we compute the
percentage standard deviation (SD) of the cycles and the L2 cache
misses among all the samples as shown in the following equation,
where PMC(i) is the PMC value for the i-th sample, A is the aver-
age PMC value per sample, and N is the total number of samples.

SD(%) =

√∑
i
(PMC(i) − A)2

N
∗ 100/A

Table 4 reports the percentage SD values for cycles and L2
cache misses. A large SD value implies the performance event
is more time-variant dynamically. Again, there exists some cor-
relation between the cycle event and L2 cache miss event on the
SD. Or rather, if one performance monitoring event is dynamically
variant, so is the other one. This is because the delinquent loads
in our targeted loops are usually on the critical path and thus, the
cache miss behavior directly affects the cycle count behavior.

5.2.2. Performance potential with perfect throttling.
To evaluate the dynamic throttling mechanisms, it is essential to
gauge when the helper thread improves or degrades the perfor-
mance of the main thread. This can be done by comparing the
cycles with and without helper threads. For a limit study, an ideal
scenario is to activate the helper thread when it is beneficial and
deactivate it when it degrades performance. Thus, the first step
is to collect the EmonLite profiles, using the sample-based static
trigger, for every sampling period with and without helper threads.
Using the samples without helper threads as baseline, the cycle
counts of the samples that show performance improvements with

0

20

40

60

80

100

120

MCF ART BZIP2 MST EM3D

N
o

rm
al

iz
ed

E
xe

cu
tio

n
T

im
e

Static trigger w/ OS API Dynamic trigger w/ OS API

Static trigger w/ HW mechanism Dynamic trigger w/ HW mechanism

Figure 9. Performance comparison between
static and dynamic trigger scenarios

helper threads are recorded. For the remaining samples, the in-
creased cycle counts due to detrimental effect of helper threads are
discarded and the baseline cycle counts are recorded instead. The
total number of the recorded cycles projects the performance of
a perfect throttling scheme, where the throttling algorithm would
activate a helper thread only for those samples with speedup.

Figure 9 depicts the total cycles for the targeted loops, not
the entire program, for four different configurations; Static trig-
ger with OS API, Dynamic trigger with OS API, Static trigger
with HW mechanism, and Dynamic trigger with HW mechanism,
where each bar is normalized on the cycles of the baseline. It is
apparent that perfect throttling would provide non-trivial speedups
beyond the static trigger performance. The figure shows 4.8%
more gain with OS API and 1.2% gain with hardware mecha-
nism. Interestingly, there exists correlation between the SD values
in Table 4 and the impact of dynamic throttling in Figure 9. For
instance, BZIP2 has the largest SD value for cycle counts show-
ing the most dynamic behavior among the benchmarks, and the
amount of execution time difference without and with dynamic
throttling is also the largest. This implies applications with more
dynamic behavior could benefit more from dynamic throttling.
With perfect throttling algorithm and light-weight hardware syn-
chronization mechanism, helper threads would provide as much
as 20.6% wall-clock speedup for the targeted loop in BZIP2. This
performance potential of dynamic throttling serves to motivate fu-
ture efforts for optimization.

5.3. Sampling granularity and sensitivity of dy-
namic behaviors

Currently, the granularity of the sample-based trigger is lim-
ited by the cost of the thread synchronization mechanisms. Even
at 1,500 cycles, the hardware synchronization cost remains to be
more than twice the L2 cache miss latency. Consequently, the dy-
namic behavior of a program can be exploited at rather coarse-
grain. In this section, we show that the time variance in the dy-

0

20

40

60

80

100

10000 1000 100 50 10

Sampling Period (Loop Iterations)

P
er

ce
n

ta
g

e
S

D
 (%

)

Figure 10. Percentage SD of L2 cache misses
for various sampling periods

namic cache miss behavior becomes more pronounced as the res-
olution of sampling of the program execution increases, thus indi-
cating much more room for exploring dynamic throttling at finer-
granularity. In turn, this motivates further hardware optimization
to reduce synchronization cost.

In Figure 10, the sampling period is varied from 10000,
to 1000, 100, 50, and 10 loop iterations for the loop in
price out impl() of MCF and the L2 cache misses are pro-
filed for each sample using EmonLite. The graph shows the per-
centage SD for these different sampling periods. The SD values
show a steady increase from 10000, to 1000, 100, and 50 itera-
tions. Once the sampling period reaches 10 loop iterations, where
each sample takes 2K cycles on average, the dynamic cache miss
behavior fluctuates, and there is significant variation in L2 cache
miss counts among different samples. Such dynamic cache behav-
ior can only be captured at very high sampling resolution.

6. Key observations

6.1. Impediments to speedup

From our experience with helper threads, we have learned that
to achieve significant speedup on a real machine, a number of is-
sues that are correlated need to be addressed.

First, resource contentions in the hyper-threaded processor im-
pose tricky tradeoffs regarding when to fire off a helper thread,
how long to sustain the helper thread, and how frequent to reac-
tivate the helper thread. In an SMT machine, for helper threads
to be effective, potential resource contention with the main thread
must be minimized so as not to degrade the performance of the
main thread.

Second, program execution can exhibit dynamically varying
behavior relative to cache misses and resource contentions. There-
fore, there are some time phases where helper threads may not be
helpful due to, for instance, lack of cache misses, MSHRs, cache
ports, or bus bandwidth. We observe that indiscriminately running
helper threads solely based on the compile-time placed static trig-
gers is not always desirable. Dynamic throttling of helper thread
invocation is important for achieving effective prefetching benefit

without suffering potential slow down.
Third, to achieve more speedup with helper threads requires

monitoring and exploiting dynamic behaviors of program execu-
tion. This requires hand-shaking between the main thread and the
helper threads. To do this effectively, having very light-weight
thread synchronization and switching mechanisms is crucial.

6.2. Essential mechanisms

To overcome these impediments, we first need better compiler
algorithms to construct more judicious helper threads to ensure
more timely activation and deactivation. In addition, the compiler
can further optimize the helper thread to reduce the resource con-
tention, e.g. by exploiting occasional stride-prefetch pattern, as a
form of strength reduction, to accelerate helper thread execution,
thus potentially minimizing resource occupancy time by the helper
threads.

In addition, it is crucial to employ run-time mechanisms to cap-
ture the dynamic program behavior and throttle the helper threads,
thereby filtering out helper thread activations, which lead to waste-
ful resource contention and unnecessary prefetches. Since the dy-
namic throttling mechanisms require very fine-grain thread syn-
chronization, light-weight thread synchronization support in hard-
ware is essential.

If provided with such compile-time and run-time support,
helper threading can be a highly effective technique for dealing
with the ever increasing memory latency problem in workloads
that have large working sets and that suffer from significant cache
misses, especially those misses that defy stride based prefetchers.

7. Related works

In pre-execution techniques, constructing effective helper
threads is the key to achieve performance improvement. It can
be done in either software or hardware. Software-controlled pre-
execution extracts code for pre-execution from source code [10,
12] or compiled binaries [7, 11, 16, 25] using off-line analysis
techniques. This approach reduces hardware complexity since the
hardware is not involved in thread construction. In addition, off-
line analysis can examine large regions of code, and can exploit
information about program structure to aid in constructing effec-
tive pre-execution threads. In contrast, hardware-controlled pre-
execution [1, 6] extracts code for pre-execution from dynamic in-
struction traces using trace-processing hardware. This approach
is transparent, requiring no programmer or compiler intervention,
and can examine run-time information such as delinquency of load
instructions in an on-line fashion.

8. Conclusions

In this paper, we show that helper threads can indeed provide
wall-clock speedup on real silicon. To achieve even more gain,
however, there are acute challenges that can greatly affect the
effectiveness of helper threads, such as hardware resource con-
tention in the hyper-threaded processors, dynamic program be-

havior, and thread synchronization cost. In order to benefit from
helper threads in a real system, certain run-time mechanisms are
required to dynamically throttle the activation of the helper threads
with very light-weight thread synchronization support. It is also
beneficial for a compiler to generate efficient helper threads and
judiciously place the static triggers.

We believe there is much headroom for helper threads in the
future. The processors would spend more time on memory stalls
due to the ever-increasing memory latency. Moreover, the com-
piler will generate highly optimized helper threads for the hyper-
threaded processors and target more cache misses in the appli-
cations. For future work, our focus is on tackling the two im-
portant issues identified in this study; development of practical
dynamic throttling framework and even lighter-weight user-level
thread synchronization mechanisms.

9. Acknowledgments

The authors thank Gerolf Hoflehner and Dan Lavery for helpful
comments on the compiler issues, and Shihjong Kuo for providing
tools to implement EmonLite. We also thank Jamison Collins and
the anonymous reviewers for their constructive comments on pre-
vious drafts of this paper. Donald Yeung was supported in part by
NSF Computer Systems Architecture grant CCR-0093110 and in
part by NSF CAREER Award CCR-0000988.

References

[1] M. Annavaram, J. M. Patel, and E. S. Davidson. Data
Prefetching by Dependence Graph Precomputation. In Pro-
ceedings of the 28th Annual International Symposium on
Computer Architecture, pages 52–61, Goteborg, Sweden,
June 2001. ACM.

[2] M. C. Carlisle. Olden: Parallelizing Programs with Dynamic
Data Structures on Distributed-Memory Machines. Techni-
cal Report PhD Thesis, Princeton University Department of
Computer Science, June 1996.

[3] R. S. Chappell, S. P. Kim, S. K. Reinhardt, and Y. N. Patt.
Simultaneous Subordinate Microthreading (SSMT). In Pro-
ceedings of the 26th Annual International Symposium on
Computer Architecture, pages 186–195, Atlanta, GA, May
1999. ACM.

[4] T.-F. Chen and J.-L. Baer. Effective Hardware-Based Data
Prefetching for High-Performance Processors. IEEE Trans-
actions on Computers, 44(5):609–623, May 1995.

[5] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-Conscious
Structure Layout. In Proceedings of the ACM SIGPLAN ’99
Conference on Programming Language Design and Imple-
mentation, pages 1–12, Atlanta, GA, May 1999. ACM.

[6] J. Collins, D. Tullsen, H. Wang, and J. Shen. Dynamic Spec-
ulative Precomputation. In Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture,
pages 306–317, Austin, TX, December 2001. ACM.

[7] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F.
Lee, D. Lavery, and J. P. Shen. Speculative Precomputation:

Long-range Prefetching of Delinquent Loads. In Proceed-
ings of the 28th Annual International Symposium on Com-
puter Architecture, pages 14–25, Goteborg, Sweden, June
2001. ACM.

[8] J. L. Henning. SPEC CPU2000: measuring CPU perfor-
mance in the new millennium. IEEE Computer, July 2000.

[9] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The Microarchitecture of the Pen-
tium 4 Processor. Intel Technology Journal, Issue on Pentium
4 Processor, February 2001.

[10] D. Kim and D. Yeung. Design and Evaluation of Compiler
Algorithms for Pre-Execution. In Proceedings of the 10th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 159–
170, San Jose, CA, October 2002. ACM.

[11] S. S. W. Liao, P. H. Wang, H. Wang, G. Hoflehner, D. Lavery,
and J. P. Shen. Post-Pass Binary Adaptation for Software-
Based Speculative Precomputation. In Proceedings of the
ACM SIGPLAN ’02 Conference on Programming Language
Design and Implementation, pages 117–128, Berlin, Ger-
many, June 2002. ACM.

[12] C.-K. Luk. Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, pages 40–51, Gote-
borg, Sweden, June 2001. ACM.

[13] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller,
and M. Upton. Hyper-Threading Technology Architecture
and Microarchitecture. Intel Technology Journal, Volume 6,
Issue on Hyper-Threading Technology, February 2002.

[14] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi. Slice-
Processors: An Implementation of Operation-Based Predic-
tion. In Proceedings of the 15th International Conference on
Supercomputing, pages 321–334, Sorrento, Italy, June 2001.
ACM.

[15] T. Mowry. Tolerating Latency in Multiprocessors through
Compiler-Inserted Prefetching. ACM Transactions on Com-
puter Systems, 16(1):55–92, February 1998.

[16] A. Roth and G. S. Sohi. Speculative Data-Driven Multi-
threading. In Proceedings of the 7th International Confer-
ence on High Performance Computer Architecture, pages
191–202, Monterrey, Mexico, January 2001. IEEE.

[17] M. Smith. Tracing with Pixie. Technical Report CSL-TR-
91-497, Stanford University, Nov 1991.

[18] Y. Solihin, J. Lee, and J. Torrellas. Using a User-Level Mem-
ory Thread for Correlation Prefetching. In Proceedings of the
29th Annual International Symposium on Computer Archi-
tecture, pages 171–182, Anchorage, AK, May 2002. ACM.

[19] Y. Song and M. Dubois. Assisted Execution. Technical Re-
port CENG 98-25, Department of EE-Systems, University of
Southern California, Oct 1998.

[20] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream
Processors: Improving Both Performance and Fault Toler-
ance. In Proceedings of the 9th International Conference

on Architectural Support for Programming Languages and
Operating Systems, pages 191–202, Cambridge, MA, May
2000. ACM.

[21] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multi-
threading: Maximizing On-Chip Parallelism. In Proceedings
of the 22nd Annual International Symposium on Computer
Architecture, pages 392–403, Santa Margherita Ligure, Italy,
June 1995. ACM.

[22] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy.
Supporting Fine-Grained Synchronization on a Simultane-
ous Multithreading Processor. In Proceedings of the 5th In-
ternational Symposium on High-Performance Computer Ar-
chitecture, pages 54–58, Orlando, FL, January 1999. IEEE.

[23] Intel Corporation. VTune Performance Analyzer.
http://developer.intel.com/software/products/VTune/
index.html.

[24] M. Weiser. Program Slicing. IEEE Transactions on Software
Engineering, SE-10(4), July 1984.

[25] C. B. Zilles and G. Sohi. Execution-Based Prediction Using
Speculative Slices. In Proceedings of the 28th Annual Inter-
national Symposium on Computer Architecture, pages 2–13,
Goteborg, Sweden, June 2001. ACM.

[26] C. B. Zilles and G. S. Sohi. Understanding the Backward
Slices of Performance Degrading Instructions. In Proceed-
ings of the 27th Annual International Symposium on Com-
puter Architecture, pages 172–181, Vancouver, Canada, June
2000. ACM.

