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Abstract

As the processor-memory performance gap continues to widen, application performance becomes
increasingly limited by the memory system. Applications that employ linked data structures (LDSs) are
particularly challenging from the standpoint of the memory system because of the memory serialization
effects associated with indirect memory addressing. Also known as the pointer chasing problem, such
memory serialization effects prevent latency tolerance techniques from overlapping the cache misses
suffered along a chain of indirect memory references. Consequently, latency tolerance techniques are
limited in their ability to tolerate the latency of cache misses arising from pointer chasing.

While pointer-chasing is inherently sequential, pointer-chasing computations typically traverse mul-
tiple pointer chains in an independent fashion. Such independent pointer-chasing traversals represent a
large source of memory parallelism. This paper explores the possibility of exploiting such memory par-
allelism for the purposes of memory latency tolerance. First, we present a memory scheduling algorithm
that computes a prefetch schedule from an LDS traversal specification that overlaps serialized memory
fetches across multiple pointer-chasing traversals. Second, we present a prefetch engine architecture
capable of traversing LDSs. Our prefetch engine issues prefetches according to the prefetch schedule,
thus exploiting the memory parallelism uncovered by our scheduling algorithm. Finally, we conduct an
experimental evaluation of our prefetching technique on four pointer-chasing applications. Our results
show multi-chain prefetching increases performance between 52% and 78%. However, early initiation of
prefetches causes prefetch buffer thrashing, thus limiting further increases in performance. Additional
simulations show that prefetch buffer thrashing can be eliminated in some cases by using a larger prefetch
buffer and by reducing the conservative prefetch distances computed by our scheduling algorithm.

1 Introduction

Prefetching has proven successful at hiding memory latency for applications that employ regular data struc-
tures (e.g. arrays). Unfortunately, conventional prefetching techniques are far less successful for pointer-
intensive applications due to the memory serialization effects associated with linked data structure (LDS)
traversal, known as the pointer chasing problem. The memory operations performed for array traversal can
issue in parallel because individual array elements can be referenced independently. In contrast, the memory
operations performed for LDS traversal must dereference a series of pointers, a purely sequential operation.
The lack of memory parallelism prevents conventional prefetching techniques from overlapping cache misses

suffered along a pointer chain, thus limiting their effectiveness for pointer-intensive applications.

Recently, researchers have begun investigating novel prefetching techniques for LDS traversal [2, 8, 7, 5, 4].
These new techniques address the pointer-chasing problem using one of two different approaches. Techniques

in the first approach [2, 8, 4], which we call jump pointer techniques, insert additional pointers into the LDS
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to connect non-consecutive link elements. These “jump pointers” allow prefetch instructions to name link
elements further down the pointer chain without sequentially traversing the intermediate links. Consequently,
jump pointer techniques create memory parallelism for overlapping the cache misses suffered along a single
chain of pointers. Techniques in the second approach [7, 5, 4], which we call stateless technigues, perform
prefetching using only the natural pointers belonging to the LDS, and thus do not require additional state
for prefetching. Existing stateless techniques prefetch pointer chains sequentially, and do not exploit any
memory parallelism (or they exploit only limited forms of memory parallelism [7]). Instead, they schedule
each prefetch as early in the loop iteration as possible to maximize the amount of work available for memory

latency overlap.

Because of their ability to exploit memory parallelism, jump pointer techniques achieve higher levels of
performance over a wider class of applications as compared to existing stateless techniques. Current stateless
techniques can effectively tolerate memory latency only when the loops (or recursive functions) used to
traverse the LDS contain sufficient work to hide the serialized memory latency. Unfortunately, preliminary
studies show that several important pointer-chasing applications consist mostly of traversal loops with small
amounts of work [2]. However, jump pointer techniques are burdened with the creation and management
of the prefetch state. The creation of jump pointers incurs runtime and memory overhead proportional to
the size of the LDS. In addition, jump pointer techniques become less effective for applications with highly
adaptive data structures since frequent inserts and deletes of link elements perturb the jump pointers. While
the jump pointers can be modified as the LDS changes, this incurs additional runtime overhead. Finally,
and perhaps most important, jump pointer techniques are intrusive. They require modification of the code’s
data structures, and insertion of jump pointer creation and management code. These transformations are

complex and difficult to automate. Stateless techniques do not suffer from these drawbacks.

In this paper, we propose a new stateless prefetching technique called multi-chain prefetching. Like
existing stateless techniques, our technique prefetches a single chain of pointers sequentially; however, we
schedule the initiation of the chain of prefetches prior to the code that traverses the chain, thus overlapping
a portion of the serialized memory latency with pre-loop work. A scheduling algorithm ensures that prefetch
chains are initiated sufficiently early to tolerate all the memory latency. As prefetch chains are scheduled
increasingly early to accomodate long pointer chains, overlap occurs between multiple independent prefetch
chains, thus creating memory parallelism across pointer chains that are traversed by separate loops or
recursive function calls. Because such multi-chain overlap can be irregular, we rely on a prefetch engine to

pursue independent pointer chains outside of the main CPU.

Multi-chain prefetching provides certain advantages over existing pointer prefetching techniques. Since
multi-chain prefetching is stateless, it does not require code transformations to create and manage prefetch
state as needed by jump pointer techniques, nor does it incur the runtime and memory overheads associated

with the same. However, unlike existing stateless techniques, multi-chain prefetching more aggressively



a) while (ptr) {

<compute>
ptr = ptr->next;

}

) B for (i=0;i < N;i++){
ptr = A[il;
N  while(ptr) {
<compute>
ptr = ptr->next;

}
}

Figure 1: Overlapping pointer-chasing chains. a). Initiate prefetching of pointer chain prior to traversal
loop. b). Exploit memory parallelism between independent pointer-chasing traversals.

schedules the prefetch of serialized memory latency. Consequently, multi-chain prefetching can effectively

tolerate memory latency even when the traversal loops contain very little work.

The rest of this paper is organized as follows. Section 2 further explains the essence of our approach.
Section 3 describes the scheduling algorithm to properly schedule the initiation of prefetch chains. Section 4
describes the prefetch engine support for our technique, and Section 5 presents experimental results. Finally,

Section 6 presents the conclusions of the paper.

2 Multi-Chain Prefetching

To illustrate the key idea behind multi-chain prefetching, consider a linked list traversal as shown in Figure 1a.
In our example, a loop traverses a list of length four, performing some computation at each node in the list.
The four hashed boxes in Figure 1a represent the processor’s execution of the four loop iterations, each of

which contains wy cycles of work. We assume an [-cycle cache miss latency, where [ > w;.

Figure 1a illustrates how multi-chain prefetching schedules the prefetch requests for the list nodes as-
suming all four prefetches miss in the cache. Because multi-chain prefetching uses the natural pointers in
the LDS for prefetching, the prefetch requests must issue serially and require 4 cycles to complete, as rep-
resented by the dotted bars in Figure 1a. Since I > wj, the loop alone contains insufficient work to hide the
serialized memory latency. However, multi-chain prefetching effectively tolerates all the memory latency by
initiating the prefetch chain 4/ — 3w; cycles prior to the traversal loop, called the pre-loop time (PT), which
guarantees that each prefetch arrives before its consuming loop iteration. As illustrated in Figure 1a, these
prefetches issue asynchronously with respect to the loop code. Our technique relies on a prefetch engine to

issue asynchronous prefetches independent of the main CPU.



While pre-loop overlap can tolerate the serialized memory latency for a single pointer chain, pointer
chasing computations typically traverse many pointer chains. For example, repeated hash table lookups
traverse a different linked list for each hash bucket, and in tree traversal, the traversal of the sub-trees at
each node pursues independent chains. To illustrate how multi-chain prefetching exploits such independent
pointer-chasing traversals, Figure 1b shows a doubly nested loop that traverses an array of lists. The outer
loop, denoted by a shaded box with wy cycles of work, traverses an array that extracts a root pointer for

the inner loop. The inner loop is identical to the loop in Figure 1a.

As in Figure la, multi-chain prefetching still initiates each chain of prefetches PT' cycles prior to its
corresponding inner loop. To provide the PT cycles of pre-inner loop overlap, each prefetch chain is initiated
from an earlier outer loop iteration. The number of outer loop iterations by which a prefetch chain must
be initiated in advance is known as the prefetch distance (PD). In the Figure 1b example, PD = 2. Notice
when PD > 0, the prefetches from separate chains overlap across iterations of the outer loop, hence exposing
memory parallelism despite the fact that each chain is prefetched serially. As illustrated in Figure 1b, the
initiation of prefetch chains occurs synchronously with iterations of the outer loop. Our prefetch engine
observes the code execution inside the processor and issues each chain in a synchronized fashion with the

outer loop.

3 Prefetch Chain Scheduling

In this section, we present an off-line technique for scheduling prefetch chains, as described in Section 2. Our
technique performs scheduling across multiple control structures since the overlap of cache misses in multi-
chain prefetching spans multiple loops and/or recursive functions. We present our technique in two parts.
First, in Section 3.1, we introduce an LDS traversal descriptor framework that captures the information
required for prefetch chain scheduling. Our framework handles loops and recursive functions that traverse
arrays, lists, trees, and the composition of all of these. Second, in Section 3.2, we describe a scheduling
algorithm that identifies the asynchronous and synchronous prefetch traversals as discussed in Section 2, and

computes a prefetch distance for each synchronous traversal.

3.1 LDS Descriptor Framework

To perform prefetch chain scheduling, we first extract information from the LDS traversal code necessary
for scheduling. Two types of information are required: data structure layout, and traversal code work.
We define a framework consisting of LDS descriptors to represent both the layout and work information.
Figure 2 illustrates how our descriptors represent the data structure layout information, and Figure 3 shows
the descriptor extensions that provide the traversal code work information. Our descriptors are also used by

the prefetch engine to generate prefetch addresses at runtime, as discussed later in Section 4.

We specify data layout using two different descriptors, one for arrays and one for linked lists. As shown
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Figure 2: LDS descriptors: data layout information.

in Figure 2a, we represent an array structure with a descriptor that contains three parameters: base (B),
length (L), and stride (S). The B parameter specifies the base address of the array, the L parameter
specifies the number of array elements traversed by the application code, and the S parameter specifies the
stride between consecutive references. This descriptor captures the layout of the array elements accessed by
a loop that performs a constant-stride array traversal. As shown in Figure 2b, we represent a linked list
structure with another descriptor that also contains three parameters. The B parameter specifies the root
pointer of the list, the L parameter specifies the number of link elements traversed by the application code,

and the xS parameter specifies the offset from each link element address where the “next” pointer is located.

To enable representation of complex data structures, our framework permits descriptor composition.
Composition is represented as a directed graph whose nodes are descriptors and whose edges are composition
dependences. Two types of composition are allowed: nested and recursive. In a nested composition, each
address generated by an outer descriptor forms the B parameter for multiple instantiations of a dependent
inner descriptor. A parameter, O, can be specified to shift the base address of each inner descriptor by a
constant offset. Such nested descriptors capture the data access patterns of nested loops. In the top half
of Figure 2c, we show a nested descriptor corresponding to the traversal of a 2-D array. We also permit

indirection between nested descriptors denoted by a “*” in front of the outer descriptor, as illustrated in the
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Figure 3: LDS descriptors: traversal code work information.

lower half of Figure 2c.! Although the examples in Figure 2c only use a single descriptor at each nesting
level, our framework permits multiple inner descriptors to be nested underneath a single outer descriptor.
Our framework also allows an arbitrary depth of nesting, though the prefetch engine may impose practical

limitations.

In addition to nested composition, our framework permits recursive composition. Recursively composed
descriptors behave identically to nested descriptors, except that the edge for the composition dependence is
a backwards edge. Since recursive composition introduces cycles into the descriptor graph, our framework
requires each recursive arc to be annotated with the depth of recursion, D, to bound the size of the data
structure. Figure 2d shows a simple recursive descriptor in which the inner and outer descriptors are one and
the same (in which case, both the B and O parameters are specified in the same descriptor), corresponding

to a simple tree data structure.

Finally, Figure 3 shows the extensions to the descriptors in Figure 2 that provide the traversal code work
information. The work information specifies the amount of work performed by the application code as it
traverses the LDS specified by the data layout information. For each descriptor in the descriptor graph, two
parameters are added. The work parameter, w, specifies the amount of work per traversal loop iteration.
The work parameter is illustrated in Figure 3a. The offset parameter, o, is used for composed descriptors,
and specifies the amount of work separating the first iteration of the inner descriptor from each iteration of

the outer descriptor. The offset parameter is illustrated in Figure 3b.

3.2 Scheduling Algorithm

Once the descriptor information has been extracted from the LDS traversal code, we analyze the resulting

descriptor graph and schedule all the prefetch chains. Two properties of the descriptor graph make scheduling

IThese data structures have been referred to as “backbone-and-rib” structures [8].
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Figure 4: Scheduling algorithm for non-cyclic static descriptor graphs.

challenging: cycles due to recursively composed descriptors, and descriptor parameters that are not known
until runtime (i.e. dynamic descriptor graphs). In this section, we first describe how scheduling is performed
for acyclic static descriptor graphs. Then, we briefly discuss extensions to handle both cyclic and dynamic

descriptor graphs.

3.2.1 Acyclic Static Descriptor Graphs

Our scheduling algorithm computes three scheduling parameters for each descriptor in the descriptor graph:
whether the descriptor requires asynchronous or synchronous prefetching, the pre-loop time, PT, and if
synchronous prefetching is to be used, the prefetch distance, PD (see Section 2 for a discussion of these
parameters). Figure 4 presents a scheduling algorithm that computes these parameters. Since our scheduling
algorithm is defined recursively, we must process the descriptors beginning at the leaves of the descriptor
graph and work towards the top. Assuming there are N descriptors in the descriptor graph, and assuming we
assign a number to each descriptor between 1 and N in top-down order, then the “for (N down to 1)” loop
in Figure 4 visits the descriptors in the required bottom-up order. Our scheduling algorithm also assumes

the cache miss latency to physical memory, [, is known.

We now describe the computation of the three scheduling parameters for each descriptor visited in the
descriptor graph. Descriptor ¢ requires asynchronous prefetching if it traverses a linked list and there is
insufficient work in the traversal loop to hide the serialized memory latency (i.e. I > w;). Otherwise, if
descriptor i traverses an array or if I <= wj;, then it requires synchronous prefetching.? The “if” conditional

test in Figure 4 computes whether asynchronous or synchronous prefetching is used.

Next, we compute the pre-loop time, PT. For asynchronous prefetching, we must exploit work prior
to the traversal loop to hide the excess serialized memory latency that cannot be hidden underneath the

traversal loop itself. From Figure 1, we saw that PT = 4] — 3w, for an 4-iteration pointer-chasing loop. In

2Notice this implies that linked list traversals in which I <= w; use synchronous prefetching since prefetching one link
element per loop iteration can tolerate the serialized memory latency when sufficient work exists in the loop code itself.



general, PT; = L; * (I — w;) + w;. For synchronous prefetching, we need to hide the cache miss for the data
consumed only by the first iteration of the traversal loop, so PT; = [. These equations for PT conservatively
assume every prefetch will miss in the cache and suffer the full I-cycle latency to memory because determining

which prefetches will actually miss in the cache is difficult, particularly for pointer-chasing traversals.

Equations 2 and 4 in Figure 4 compute the PT parameter for asynchronous and synchronous prefetching,
respectively. Notice these equations both contain an extra term, PTnest;. PTnest; serializes PT; and
PT},, the pre-loop time for any nested descriptor k composed via indirection (see lower half of Figure 2c).
Serialization occurs between composed descriptors that use indirection because the base address for the inner
descriptor k cannot be computed until each corresponding address in the outer descriptor ¢ is computed. We
must sum PT} into PT;; otherwise, the prefetches for descriptor k will not initiate early enough. Equation
1 in Figure 4 considers all descriptors composed under descriptor ¢ that use indirection and sets PTnest; to

the largest PT}, found. The offset, o, is subtracted because it overlaps with descriptor k’s pre-loop time.

Finally, we compute the prefetch distance, PD. Descriptors that require asynchronous prefetching do
not have a prefetch distance; we denote this by setting PD; = oco. The prefetch distance for descriptors that
require synchronous prefetching is exactly the number of loop iterations necessary to overlap the pre-loop
time, which is [%] Equations 3 and 5 in Figure 4 compute the prefetch distance for asynchronous and

synchronous prefetching, respectively.
3.2.2 Handling Cyclic Dynamic Descriptor Graphs

Section 3.2.1 describes our scheduling algorithm assuming the descriptor graph is acyclic. In general, de-
scriptor graphs are cyclic due to recursive descriptor composition. We preprocess cyclic graphs to convert
them into acyclic graphs, and then use the same scheduling algorithm described in Section 3.2.1 to compute
the scheduling parameters. The preprocessing step converts each recursive composition in the descriptor
graph into a nested composition by replicating all the descriptors involved in the cycle D times, nesting each
replicated copy underneath the next. Children nodes of the replicated descriptors that are not involved in
the cycle need not be replicated; however, the dependence edges leading to such children are replicated once

for each new descriptor created.

In addition to having cycles, descriptor graphs are typically dynamic as well-they contain parameters that
are unknown at compile time such as list length and recursion depth. Because the compiler does not know
the extent of dynamic data structures a priori, it cannot exactly schedule all the prefetch chains using our
scheduling algorithm. However, we make the key insight that all prefetch distances in a dynamic graph are
bounded, regardless of actual chain lengths. Consider the array-of-lists example from Figure 1. The prefetch
distance of each linked list is PD = [PT/w2]. As the list length, L, increases, both PT and ws increase
linearly. In practice, the ratio PT;/w; increases asymptotically to an upper bound value as pointer chains

grow in length. Our scheduling algorithm can compute the bounded prefetch distance for all descriptors by



substituting large values into the unknown parameters in the dynamic descriptor graph. These statically

computed prefetch distances can then be used at runtime for prefetching.

Because they represent an upper bound, the bounded prefetch distances guarantee that all prefetches are
initiated far enough in advance to tolerate their memory latencies without using any runtime information.
However, the bounds can be conservative; hence, using the bounded values for prefetching may initiate

prefetches earlier than necessary. In Section 5, we will quantify this effect.

4 Prefetch Engine

In multi-chain prefetching, prefetch requests along a chain of pointers issue asynchronously with respect to
the traversal loop (see Figure 1); therefore, it is difficult or impossible to software pipeline the prefetches into
the loop code. In this section, we introduce a programmable prefetch engine architecture that dynamically
issues the prefetches according to our scheduling algorithm outside of the main CPU. Section 4.1 describes
how our prefetch engine is integrated with a commodity CPU, Section 4.2 describes the address generation

hardware, and Section 4.3 discusses how prefetches are scheduled.

4.1 Integration with a CPU

The hardware organization of the prefetch engine appears in Figure 5. The design requires three additions
to a commodity microprocessor: a prefetch buffer, the prefetch engine itself, and two new instructions called

SINIT and SYNC.

Our prefetch buffer is similar to the prefetch buffers proposed for software prefetching [3]. It is a fully
associative buffer that stages prefetched data prior to its access by the processor. Each time the prefetch
engine issues a new prefetch request, the request address is checked in the processor’s cache and in the
prefetch buffer. If a miss occurs in both places, a new entry in the prefetch buffer is allocated and a memory
request is initiated for the cache block that missed. When the request completes, the cache block is loaded
into the prefetch buffer. All memory operations performed by the processor check both the cache and the

prefetch buffer. If a hit in the prefetch buffer occurs, the corresponding cache block is moved into the cache.

In the next section, we discuss the prefetch engine internals and describe how the ISA extensions are

used to help properly schedule prefetch requests.

4.2 Address Generation Hardware

The prefetch engine consists of two hardware tables, the Address Descriptor Table (ADT), and the Address
Generator Table (AGT). The ADT stores the data layout information from the LDS descriptors described
in Section 3.1. Each node in an LDS descriptor graph occupies a single ADT entry, identified by the graph

number, ID (each LDS descriptor graph is assigned a unique ID), and the descriptor node number within
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Figure 5: Prefetch engine hardware.

the graph, 4, assuming the top-down numbering of nodes discussed in Section 3.2.1. The Parent field in
ADT entry 4 specifies the number of descriptor i’s parent in the descriptor graph. The next six values, B,
0, L, S, %(), and xS, record the descriptor parameters that specify the data layout information. Here, xS
is a 1-bit value that specifies constant-stride versus pointer-chasing address generation, and *() is another
1-bit value that specifies the use of indirection between composed descriptors. Finally, the PD field stores
the prefetch distance computed by our scheduling algorithm for descriptor . The ADT is memory mapped

into the main processor’s address space, and is written during program initialization.

The AGT provides dynamic storage for address computation during prefetching. AGT entries are acti-
vated dynamically as prefetch addresses are generated. Once activated, an AGT entry generates the prefetch
addresses for a single LDS descriptor. AGT entry activation can occur in two ways. First, the main proces-
sor can execute an SINIT(ID) instruction to initiate prefetching for the data structure identified by the
descriptor graph ID. The prefetch engine searches the ADT for the entry with the matching ID and i =0
(i.e. the root node of the descriptor graph). An AGT entry is allocated for this descriptor, the Index field
is set to zero, and the Address field is set to the B parameter in ADT entry ¢ = 0. Second, when an active
AGT entry, 4, computes a new prefetch address (explained below), a new AGT entry, 7, is activated for every
node in the descriptor graph that is a child of node i. This is done by searching the ADT for all entries,
j, with Parent = i. For each new AGT entry j, Index is set to zero, and the new address generated by
AGT entry i is placed in the Address field of AGT entry j. If the %() bit in ADT entry j is set, indicating
indirection between descriptors ¢ and j, then the prefetch engine issues a load for the Address field in AGT
entry j to perform the indirection, and places the data value loaded back in j’s Address field. Finally, the
O value from ADT entry j is added to the Address field to form the final base address.

After an AGT entry i is activated, the memory addresses associated with descriptor ¢ are generated one
at a time. Each new address is computed by adding the S parameter in ADT entry i to the current value

in AGT entry i’s Address field. In addition, the Index field is incremented. If the xS bit in ADT entry i is



set, indicating pointer chasing, then the prefetch engine issues a load for the Address field in AGT entry 4 to
perform the indirection, and places the data value loaded back in i’s Address field. Whenever an AGT entry
generates a new memory address, it must wait until the prefetch for the address is issued before generating
the next address in the sequence (explained below). Finally, when the Indez field in AGT entry 4 reaches

the L parameter in ADT entry ¢, address generation terminates, and the AGT entry is deactivated.

4.3 Prefetch Scheduling

When an active AGT entry i generates a new memory address, the prefetch engine must schedule a prefetch
for the memory address. Prefetch scheduling occurs in one of two ways. First, if the prefetches for descriptor
i should issue asynchronously (i.e. PD; = o0), the prefetch engine issues a prefetch for AGT entry ¢ immedi-
ately after a new memory address is computed in the AGT entry. Consequently, prefetches for asynchronous
AGT entries traverse a pointer chain as fast as possible, throttled only by the serialized cache misses that

occur along the chain.

Second, if the prefetches for descriptor 4 should issue synchronously (i.e. PD; # oc), then the prefetch
engine synchronizes the prefetches for AGT entry ¢ with the code that traverses the data structure described
by descriptor i. We rely on the compiler or programmer to insert a SY NC instruction at the top of the
loop or recursive function call that traverses the corresponding data structure to provide the synchronization
information. Furthermore, the prefetch engine must maintain the proper prefetch distance, as computed by
our scheduling algorithm, for such synchronized AGT entries. A Count field in the AGT entry is used to
maintain this prefetch distance. The Count field is initialized to the PD value in the ADT entry (computed
by the scheduling algorithm) upon initial activation of the AGT entry. The Count value is decremented
each time the prefetch engine issues a prefetch for the AGT entry. In addition, the prefetch engine “listens”
for SYNC instructions. When a SY NC executes, it emits both an ID and an i value that matches an
AGT entry. On a match, the Count value in the AGT entry is incremented. The prefetch engine issues a
prefetch as long as Count > 0. Once Count reaches 0, the prefetch engine waits for the Count value to be
incremented before issuing the prefetch for the AGT entry, which occurs the next time the corresponding

SY NC instruction executes.

5 Results

In this section, we present experimental results that evaluate the performance of our approach. Section 5.1
describes the methodology used for our experiments, Section 5.2 presents the baseline performance results,

and Section 5.3 discusses techniques to handle prefetches that are initiated too early.



|| Application | Data Structure | Input Parameters ||

EM3D array of pointers | 10,000 nodes
MST list of lists 1024 nodes
Treeadd binary tree 20 levels

Health quadtree of lists | 5 levels, 500 iters

Table 1: Benchmark summary.
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Figure 6: Execution time for no prefetching (NP) and four versions of multi-chain prefetching (P, P4, Ps, and Pys).
Each execution time bar has been broken down into useful cycles (Busy), cycles spent executing SYNC and SINIT
instructions (SYNC), and memory stall cycles (Memory).

5.1 Experimental Methodology

To evaluate the performance of our multi-chain prefetching technique, we constructed a detailed event-
driven simulator of the prefetch engine architecture described in Section 4 coupled with a state-of-the-art
RISC processor. Our simulator uses the processor model from the SimpleScalar Tool Set [1] to model a
dynamically scheduled 4-way issue processor. The L1 cache is a split 16-Kbyte instruction/16-Kbyte data
direct-mapped write-through cache with a 32-byte block size. The L2 cache is a unified 512-Kbyte 4-way
set-associative write-back cache with 64-byte cache blocks. We assume the L1 cache has 8 MSHRs and the
L2 cache has 16 MSHRs to enable significant memory concurrency. We also allow the memory sub-system
to aggressively support a peak bandwidth of 8-Gbytes/sec. The prefetch engine is integrated on the same
chip as the processor and clocks at the same rate. We assume a 1-Kbyte prefetch buffer that is accessed
in parallel with the L1 cache. Access to the L1 cache/prefetch buffer, L2 cache, and main memory costs 1

cycle, 10 cycles, and 76 cycles respectively.

Table 1 summarizes the four applications used to evaluate our approach—-EM3D, MST, Treeadd, and

Health. All four applications come from the Olden benchmark suite [6]. In Table 1, the primary data



structures found in the applications, as well as the input parameters used in our simulations are listed.

5.2 Prefetching Performance

Figure 6 presents the results of multi-chain prefetching on our four applications. For each application,
five bars show the execution time breakdown using various forms of our prefetching technique (the bars
are explained below). Each execution time bar has been broken down into three components: time spent
executing useful instructions, time spent executing SYNC and SINIT instructions, and time spent in
memory stall, labeled “Busy,” “SYNC,” and “Memory,” respectively. All times have been normalized against

the leftmost bar for each application, labeled “NP.”

The execution bars labeled “N P” show the performance of the applications without prefetching. As these
bars indicate, our applications are severely memory bound, spending anywhere between 52% and 91% stalled
on the memory system. These large memory overheads exist despite the efforts of out-of-order execution to
overlap the cache miss latencies. Out-of-order execution is less effective at tolerating the memory latency of

pointer-chasing references due to the serialized nature of the cache misses along a chain of pointers.

The “P” bars report the running time of the applications with multi-chain prefetching. Multi-chain
prefetching successfully overlaps most of the exposed memory latency for all four applications despite the
serialized nature of pointer-chasing memory references by exploiting memory parallelism across independent
pointer chains. A comparison of the “P” bars against the “NP” bars shows that our prefetch engine reduces
overall runtime between 52% and 78%. Note that the overhead of the SYNC and SINIT instructions are
negligible for all four applications; hence, practically all of the reduction in memory stall achieved by the

prefetch engine directly translates to improved execution time.

While multi-chain prefetching eliminates a large fraction of the memory stall, a significant memory stall
component still exists for EM3D, MST, and Health. A closer look at these applications revealed that the
remaining stalls are due to the early nature in which multi-chain prefetching initiates prefetches to overlap
serialized memory latency with pre-loop work. Prefetches that arrive in advance of when they are consumed
by the processor are placed in the prefetch buffer. For applications with long pointer chains (or alternatively,
short traversal loops), the number of early prefetches increases. When the number of early prefetches exceeds
the prefetch buffer size, the prefetches evict each other before they are consumed by the processor. Note
that prefetched data is placed in the L2 cache as well as the prefetch buffer; therefore, even if a prefetch is
evicted from the prefetch buffer before its use, the processor will normally enjoy a hit to the L2 cache where

prefetch thrashing is avoided due to the much larger size of the L2.

5.3 Handling Early Prefetches

We conducted several experiments to see whether the early prefetch problem inherent in multi-chain prefetch-

ing can be addressed. First, we increased the size of the prefetch buffer from 1K to 4K. The bars labeled “P,”



in Figure 6 show the impact of this enhancement. Except for EM3D which experiences a slight performance

increase, there is no perceptible change due to an increased prefetch buffer size.

Second, we reduced the prefetch distance computed by our scheduling algorithm. Our scheduling al-
gorithm is overly conservative for two reasons. First, the current algorithm does not perform any locality
analysis, and assumes that each scheduled prefetch will miss all the way to main memory. In practice, a large
fraction of prefetches will find the desired data in the L1 or L2 cache due to undetected locality. Second,
our scheduling algorithm computes the upper bound on prefetch distance since it does not have runtime
information on the extent of dynamic data structures. Both of these factors cause our scheduling algorithm
to compute prefetch distances that are too large. In the bars labeled “P;” and “P,,”, we report execution
times when all prefetch distances are shortened by a factor of two for the 1K and 4K prefetch buffer sizes,

respectively.

The “P,” bars show that shortening the prefetch distance alone does not help, though an important result
is that it does not hurt performance for any of the applications indicating that the original prefetch distances
are indeed overly conservative. However, when the shortened prefetch distances are combined with the larger
prefetch buffer size (the “Py,” bars), the number of early prefetches is reduced enough to eliminate prefetch
buffer thrashing in EM3D and MST, allowing most of the remaining stalls to be overlapped. Unfortunately,
none of our efforts could address the early prefetches in Health. Health traverses linked lists of length 150
or greater. Multi-chain prefetching requires significant buffering to overlap the misses for this application,

and so it is only effective at prefetching into the L2 cache.

6 Conclusion

While pointer-chasing is inherently sequential, pointer-chasing applications typically traverse multiple inde-
pendent pointer chains. Such independent traversals represent a large source of memory parallelism that
remains untapped by existing memory latency tolerance techniques. This paper explores a new prefetching
technique, called multi-chain prefetching, that exploits the memory parallelism across independent pointer-
chasing traversals. We present a memory scheduling algorithm that aggressively overlaps prefetches from
independent pointer-chasing traversals to eliminate memory stalls. In addition, we present a prefetch en-
gine architecture capable of traversing LDSs and issuing prefetches according to the prefetch schedule, thus

exploiting the memory parallelism uncovered by our scheduling algorithm.

To evaluate multi-chain prefetching, we conduct a simulation-based study using four pointer-intensive
applications. Our early results are encouraging, demonstrating performance increases between 52% and 78%.
The performance evaluation also reveals that early initiation of prefetches causes prefetch buffer thrashing,
thus limiting further increases in performance. The primary cause for the early prefetches is the overly
conservative nature in which our off-line scheduling algorithm computes prefetch distances due to the lack of

locality and data structure extent information. Our results show that when the prefetch distance computed



by our scheduling algorithm is reduced by a factor of 2 and the prefetch buffer size is increased to 4K, prefetch

buffer thrashing is eliminated for two of our applications. In future work, we will investigate locality analysis

and runtime profiling to provide our scheduling algorithm with more accurate information.
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