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ABSTRACT
Heterogeneous microprocessors integrate a CPU and GPU
on the same chip, affording low-overhead communication
between the two. Often times, large array data structures are
communicated from the CPU to the GPU and back. While
the on-chip cache hierarchy can support such CPU-GPU
producer-consumer sharing, this does not happen due to poor
temporal reuse. Because the data structures can be quite large,
by the time the consumer reads the data, it has been evicted
from cache even though the producer had brought it on-chip
when it originally wrote the data. As a result, the CPU-GPU
communication happens through main memory.

This paper exploits the on-chip caches in a heterogeneous
microprocessor to improve CPU-GPU communication effi-
ciency. We divide streaming computations executed by the
CPU and GPU that exhibit producer-consumer sharing into
chunks, and overlap the execution of CPU chunks with GPU
chunks in a software pipeline. To enforce data dependences,
the producer executes one chunk ahead of the consumer at
all times. We also propose a low-overhead synchronization
mechanism in which the CPU directly controls thread-block
scheduling on the GPU to maintain the producer’s “run-ahead
distance” relative to the consumer. By adjusting the chunk size
or run-ahead distance, we can make the CPU-GPU working
set fit in the last-level cache, thus permitting the producer-
consumer sharing to occur through the LLC. We show through
simulation that our technique reduces the number of DRAM
accesses by 30.4%, improves performance by 26.8%, and
lowers memory system energy by 27.4%.
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1 INTRODUCTION
Heterogeneous microprocessors integrate a CPU and GPU
onto the same chip, providing physical proximity between
the two. Compared to discrete GPUs, the physical proximity
allows for significantly lower-latency CPU-GPU communica-
tion. Not only can the CPU and GPU communicate through
a shared main memory system, but many heterogeneous mi-
croprocessors also integrate shared caches and support cache
coherence between the CPU and GPU as well, permitting
communication to remain entirely on-chip when access pat-
terns permit.

Enabled by these efficient communication mechanisms,
a few researchers have recently developed parallelization
techniques that utilize the GPUs in heterogeneous micro-
processors to speedup more complex and irregular codes.
Traditionally, discrete GPUs have been used to accelerate
massively parallel kernels which amortize the high cost of
kernel off-loads on these systems. But, the efficient commu-
nication mechanisms associated with integrated GPUs permit
more frequent off-loads of smaller loops to exploit finer gran-
ularities of parallelism. This means a wider variety of SIMD
loops, possibly contained within larger non-SIMD computa-
tions, can be gainfully off-loaded onto the integrated GPUs of
heterogeneous microprocessors. At the same time, the CPU
cores can be used to execute parallel non-SIMD computa-
tions, perhaps themselves overlapped with GPU execution.
Such heterogeneous parallelization of MIMD and SIMD code
regions has been demonstrated for distributed loops [13] as
well as nested loops [3].
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Besides enabling acceleration of more complex codes, the
fast CPU-GPU communication mechanisms available in het-
erogeneous microprocessors can also benefit massively par-
allel kernels that have traditionally been accelerated using
GPUs. Large GPU kernels move significant amounts of data
into and out of the compute units of a GPU. Often, this data
is either produced by the CPU immediately prior to kernel
launch, or is consumed by the CPU immediately after the
GPU finishes execution, or both. Such producer-consumer
sharing between the CPU and GPU naturally arises as com-
putation migrates from the CPU to the GPU and back.

While heterogeneous microprocessors efficiently support
CPU-GPU communication, unfortunately, the on-chip cache
mechanisms that afford the greatest levels of efficiency are
bypassed for producer-consumer sharing across large kernels.
The problem is poor temporal reuse owing to the large vol-
umes of data that are accessed by the CPU and GPU. As a
result, any producer-consumer sharing occurring from the
CPU to the GPU or vice versa is not supported by the on-chip
caches, but instead, occurs entirely through DRAM.

In this paper, we propose pipelined CPU-GPU scheduling
to reduce main memory accesses, a locality transformation
supported by a novel CPU-GPU synchronization mechanism
that increases temporal reuse between the CPU and GPU.
During kernel execution, a GPU does not access the entire
dataset associated with the kernel all at once. Instead, it tends
to consume and then produce data in a linear streaming fash-
ion. The same is true for the CPU, both when setting up the
input data prior to a kernel launch and when consuming the
GPU’s results after kernel execution. Hence, it is possible
to overlap the CPU and GPU execution, creating a software
pipeline in which the producer executes just in front of the
consumer, feeding it data. A novel synchronization mech-
anism sequences the producer and consumer through their
pipeline stages.

Such pipelined CPU-GPU execution can provide higher
performance through increased parallelism. However, pipelin-
ing the CPU and GPU also permits tuning the degree of tem-
poral reuse associated with the producer-consumer sharing
pattern simply by controlling how far ahead of the consumer
the producer is allowed to execute. If a sufficiently small
“run-ahead distance” is maintained, then the size of the data
communicated from the producer to the consumer can be
made to fit in the heterogeneous microprocessor’s caches.
Thus, the communication occurs entirely on-chip. This not
only improves performance, but it also benefits energy and
efficiency by significantly reducing the number of accesses to
main memory.

Our work makes several contributions in the context of
pipelined CPU-GPU scheduling:

∙ We propose to overlap CPU and GPU execution in a
software pipeline to improve temporal reuse of shared
data between the producer and consumer.

∙ We propose a novel hardware synchronization mech-
anism, called thread-block throttling, that permits the
CPU to directly control the rate of execution in the GPU,
and use this mechanism to maintain the producer’s run-
ahead distance relative to the consumer.

∙ We undertake a simulation-based evaluation using seven
benchmarks that shows our technique reduces memory
system energy by 27.4% and increases performance by
26.8% on average.

The rest of this paper is organized as follows. Section 2
presents our pipelined CPU-GPU scheduling technique in-
cluding the novel thread-block throttling mechanism. Then,
Section 3 describes the experimental methodology used for
our quantitative evaluation. Next, Section 4 presents the re-
sults. Finally, Section 5 discusses related work, and Section 6
concludes the paper.

2 PIPELINED CPU-GPU SCHEDULING
GPU kernel offloads are a form of computation migration,
moving computations from the CPU to the GPU to take advan-
tage of more parallel hardware. This computation migration
is accompanied by data movement in a producer-consumer
fashion: the CPU provides input values to the GPU upon ker-
nel initiation, while the GPU provides results back to the CPU
upon kernel completion. Moreover, the amount of data move-
ment can be quite significant if large array data structures are
involved.

The goal of our technique is to exploit the on-chip cache
hierarchy of heterogeneous microprocessors to support such
producer-consumer data movement between the CPU and
GPU efficiently. This section describes the program transfor-
mation and GPU support needed by our technique.

2.1 Scheduling for Locality
Figure 1 shows a working code example that we assume
runs on a heterogeneous microprocessor. In the figure, the
GPU_Producer kernel writes an integer array, A, while the
CPU_Consumer function reads it. The GPU kernel and CPU
function are separated by a synchronization operation (de-
viceSynchronize); hence, the two execute serially such that
the GPU kernel produces the entire array before the CPU
function begins consuming it. Figure 2(a) illustrates this se-
rial execution of the GPU kernel and the CPU function over
time.

If the integer array, A, is large compared to the micropro-
cessor’s on-chip caches, then the producer-consumer sharing
will occur through DRAM, as illustrated in Figure 3(a). In
Figure 3(a), we assume the GPU and CPU both have their
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_ _ g l o b a l _ _ void GPU_Producer ( i n t *A) {
i n t i = b l o c k S i z e ( ) * b l o c k I d ( ) + t h r e a d I d ( ) ;
A[ i ] = . . . ; / / W r i t e t o A ( produce )

}

void CPU_Consumer ( i n t *A, i n t i t e r s ) {
f o r ( i n t i = 0 ; i < i t e r s ; i ++ ) {

. . . = A[ i ] ; / / Read from A ( consume )
}

}

i n t main ( ) {
i n t nBlocks = nThreads / t h r e a d s _ p e r _ b l o c k ;
i n t *A = mal lo c ( nThreads * s i z e o f ( i n t ) ) ;

GPU_Producer <<<nBlocks ,
t h r e a d s _ p e r _ b l o c k >>>(A ) ;

d e v i c e S y n c h r o n i z e ( ) ;

CPU_Consumer (A ) ;
}

Figure 1: Kernel off-load with producer-consumer (GPU
to CPU) sharing of a large array.
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Figure 2: (a) Serial schedule. (b) Pipelined schedule.

own private caches, but a last-level cache (LLC) is shared
between the two. As the GPU_Producer kernel executes, it
streams the A array into the GPU’s private cache in order
to perform the producer writes (labeled 1a○). Assuming the
LLC is managed as a victim buffer, the A array bypasses the
shared cache during the GPU’s initial demand fetches, but
fills the LLC when it is evicted from the GPU’s private cache
(labeled 2a○). Eventually, the LLC itself becomes full with A
array elements, and evicts them back to DRAM (labeled 3a○).
By the time the CPU_Consumer function executes, the data it
references has left both the GPU’s private cache and the LLC,
so the CPU misses to DRAM (labeled 4a○). Hence, the A array

(a)

GPU Cache CPU Cache

To DRAM
1a

2a

3a

4a

(b)

GPU Cache CPU Cache

To DRAM
1b

2b

3b

Figure 3: (a) Shared data evicted from LLC before reref-
erence. (b) Shared data Hits in LLC at rereference.

is fetched from DRAM twice: once by the GPU and once by
the CPU.

To address this inefficiency, we propose to overlap the GPU
and CPU execution so that temporal reuse of the A array is
improved. Our technique creates a software pipeline of the
GPU_Producer kernel and the CPU_Consumer function. (We
also propose a hardware mechanism for efficiently synchro-
nizing the software pipeline, which will be presented in Sec-
tion 2.2). Instead of serializing the GPU and CPU, we chunk
the GPU_Producer kernel and CPU_Consumer function, and
execute chunks from the GPU and CPU simultaneously. To
enforce data dependences, we stagger the chunks such that the
GPU always runs one chunk ahead of the CPU: as the CPU
consumes the portion of the A array corresponding to chunk i,
the GPU produces the portion of the A array corresponding
to chunk i+1. Figure 2(b) illustrates this pipelined execution
of the GPU kernel and the CPU function assuming each is
divided into 4 chunks.

Comparing Figures 2(a) and 2(b), we can see that software
pipelining improves performance in part because of parallel
execution of the GPU_Producer kernel and CPU_Consumer
function. Rather than executing all 8 chunks in series as shown
in Figure 2(a), the pipeline overlaps the execution of 3 chunks,
reducing the execution time by 3

8 . (This assumes all chunks
run for the same amount of time. Depending on the applica-
tion, it is also possible for per-chunk execution times to vary
which could result in load imbalance and less speedup.) In
general, for a chunking factor N, the execution is reduced
from 2N chunks down to N 1 chunks.

But in addition to increased parallelism, software pipelin-
ing also reduces the liveness of the A array. Rather than wait
until the GPU completes the entire kernel to begin execu-
tion, the CPU starts consuming the A array right after the
GPU completes the first chunk. If the GPU and CPU remain
synchronized such that the GPU runs ahead of the CPU by
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1 chunk, then the CPU will always consume the chunk just
produced by the GPU as the GPU produces the next chunk.
This means that the producer-consumer sharing can occur
through the on-chip cache hierarchy if two chunks can fit si-
multaneously in the LLC. By choosing a sufficiently small
chunking factor, or “run-ahead distance,” the combined GPU-
CPU working set of 2 chunks can be made to fit in cache and
enable on-chip communication of the A array. The run-ahead
distance (RAD) that achieves this for each benchmark can be
determined either analytically or experimentally, which we
will show in Section 4.1.

Figure 3(b) illustrates the case when producer-consumer
sharing occurs through the on-chip cache. Similar to Fig-
ure 3(a), Figure 3(b) shows the GPU_Producer kernel filling
the LLC by way of the GPU’s private cache (labeled 1b○ and
2b○). Thanks to the improved temporal reuse afforded by soft-
ware pipelining, the CPU_Consumer function references the
A array data before it has a chance to leave the LLC, resulting
in an LLC hit (labeled 2b○). With software pipelining, the A
array is only fetched from DRAM once.

Although our running example in Figures 1 through 3(b)
involves the specific case of a single GPU producer and a
single CPU consumer, our technique generalizes to many
other cases. First, the direction of communication can be
reversed: it is possible for a CPU producer to feed a GPU
consumer. Second, there can be multiple producer / consumer
stages working at the same time. Specifically, a chain of 3
or more stages could execute back-to-back. (For example, a
CPU producer feeds a GPU consumer which becomes a GPU
producer that feeds a CPU consumer). Rather than ensure
that each stage takes up 1/2 the LLC, with more simultaneous
stages, the fraction of the LLC allocated to each stage goes
down proportionally. Section 3.3 will present our workloads
and discuss the different software pipelines that are possible.

2.2 Thread-Block Throttling
In addition to chunking the GPU_Producer kernel and the
CPU_Consumer function and executing the chunks in an
overlapped fashion, it is also necessary to synchronize the
GPU and CPU so that neither one gets ahead of the other
in the software pipeline and violate data dependences. Such
CPU-GPU synchronization can be challenging, though, given
the massive parallelism in the GPU. A critical issue is the
amount of computation per synchronization operation. In
particular, the smaller the per-synch computation, the more
efficient the synchronization mechanisms need to be, and
potentially, the greater the coordination that will be necessary
with the GPU’s massively parallel threads.

As shown in Figure 2(b), a synchronization operation is
performed after every chunk is executed by the GPU and
CPU. Chunks are sized according to their cache footprint,

with the requirement that two chunks must fit in the LLC
simultaneously. The relationship between chunk size–say, in
terms of GPU threads–and cache footprint size can be highly
application dependent. However, in our benchmarks, we find
that each GPU chunk can have several times the number of
hardware threads resident in the GPU, and yet still exhibit a
cache footprint that fits within the LLC.

For example, assume the code from Figure 1 runs on a
heterogeneous microprocessor with a 4MB LLC. Each chunk
of the GPU_Producer kernel should not use more than half
the LLC, or 2MB. Given 4-byte elements, this implies the
GPU can produce 512K elements of the A array each time
it executes a chunk. In Figure 1, each A array element is
produced by a single GPU thread, so this translates into 512K
threads per chunk, which is about 70x more than the number
of threads in the GPU from our experiments (7,680).

This per-synch computation granularity has implications
for the kind of synchronization mechanisms we require. For
instance, it is likely that purely software approaches will be
inadequate. The simplist software approach is to divide the
original GPU kernel in Figure 2(a), labeled “GPU0,” into mul-
tiple sub-kernels corresponding to the chunks shown in Fig-
ure 2(b), labeled “GPU1”–”GPU4,” and to perform a launch
and deviceSynchronize() operation for each sub-kernel. Un-
fortunately, kernel launches are heavy weight operations with
high associated overheads. Although the per-synch computa-
tion exceeds the number of GPU hardware threads, perform-
ing a kernel launch for every chunk would result in significant
performance degradation.

Rather than rely on purely software approaches, we pro-
pose a hardware-assisted mechanism to mitigate the over-
heads. Our approach launches a single GPU kernel (“GPU0”
in Figure 2(a)) to amortize the launch overhead, but allows
the CPU to control the progress of the kernel’s execution. To
do this, we expose the scheduling of thread blocks within the
GPU’s command processor / thread-block dispatcher shown
in Figure 4. Normally, the command processor / thread-block
dispatcher schedules as much of a kernel’s pool of thread
blocks as will fit onto the GPU. We modified the dispatcher
to schedule thread blocks in groups equal to the per-synch
computation size. (The group size is communicated to the
command processor during kernel launch). The dispatcher
schedules thread blocks one group at a time, with each group
released only after a signal from the CPU. (This CPU signal is
much lighter weight than a kernel launch). Upon completion
of each group, the GPU also signals to the CPU so that it may
coordinate the release of subsequent groups. We call this syn-
chronization mechanism thread-block throttling. Section 3.2
will provide more details on its implementation.
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CPU GPU
Number of cores 4 Number of CUs 3
CPU Clock rate 2.95 GHz GPU Clock rate 1100 MHz
Issue width 8 Number of SIMD Units per CU 4
Issue queue size 64 SIMD size 16
Reorder buffer size 192 Wavefront size 64
L1-I cache (private per core) 32 KB Wavefront slots (max WFs per CU) 10
L1-D cache (private per core) 64 KB L1 (TCP) Size (Private per CU) 128 KB
L2 cache (shared per core-pair) 2 MB L2 (TCC) Size 256 KB
L3 Cache (LLC) 4MB
Main Memory 8 GB DDR4 16x4 (64 bit) @ 2400 MHz

Table 1: Simulation parameters used in the experiments. The modeled heterogeneous microprocessor resembles a Ryzen
2XXXU series APU.

GPU

Compute 
Units

Command 
Processor

Thread-
block 

Dispatcher

<Signal_Done>

Wait(signal)Send_Cmd()

Register_Kernel
Launch_Kernel
Fwd_Progress(rad)

CmdQueue

CPU

Figure 4: Thread-block throttling mechanism.

3 METHODOLOGY
This section describes our experimental methodology for eval-
uating pipelined CPU-GPU scheduling to reduce main mem-
ory accesses. Recently, a new Gem5 simulator [9] was devel-
oped to include a realistic integrated GPU model from AMD
based on the Graphics Core Next 3 (GCN3) architecture, and
to support the HSA standard [5]. This new Gem5 simulator
better reflects how the hardware-software stack in a real GPU
works compared to older simulators, like the original Gem5-
gpu, so we use it in our evaluation. Section 3.1 discusses the
simulation parameters we use with the new Gem5 simulator,
and describes the memory hierarchy we model. Next, Sec-
tion 3.2 presents the software architecture of the new Gem5’s
GPU driver system, and the customizations that we created
within that driver system to support our technique. Finally,
Section 3.3 discusses the workloads used in the quantitative
evaluation of our technique.

3.1 Model Configuration
Table 1 lists the configuration parameters we used in the
evaluation of our technique on the Gem5 simulator. (The
terminology for the GPU attributes in this table are from
AMD). We based the configuration off of the Ryzen 3 2XXXU
series of APUs. The modeled chip has 4 out-of-order CPU
cores integrated with a modestly sized GPU. Since Gem5 does
not model Dynamic Voltage and Frequency Scaling (DVFS),
we chose clock speeds for both the CPU and GPU in the
middle of the range for the Ryzen 2200U chip.

Memory Hierarchy. Unlike the original Gem5-gpu sim-
ulator which did not model a shared last-level cache (LLC),
the new Gem5 simulator does implement an LLC that can
support fast CPU-GPU data sharing. Each CPU has private L1
I/D caches, with every two CPUs grouped together in "core
pairs" sharing an L2 cache. The GPU’s Compute Units (CUs)
share an L1 instruction cache known as a Sequencer Cache
(SQC), while each CU has a private L1 data cache known as
a Texture Cache per Pipe (TCP). The CUs share the GPU’s
L2 cache known as a Texture Cache per Channel (TCC) [5].
Since our configuration has 4 CPU cores and 3 CUs, there
are 3 L2 caches in the system. This entire cache hierarchy is
backed by a DDR4 main memory system.

In the new Gem5 simulator, the LLC is managed as an
exclusive victim cache for the GPU and CPU L2s, controlled
by a stateless directory-based controller that implements a
coherence protocol called GPU_VIPER. In this protocol, read
requests from the L2s check the LLC for the requested block,
and if a hit occurs, removes that block from the LLC and sends
it to the requesting L2. If a miss occurs, the controller sends
a request to main memory while at the same time probing
the other L2s for the requested block. One implication of
this is that even if the data is in one of the L2s, DRAM
is still read and the energy used for this access is wasted.
Presumably, the protocol was designed this way to minimize
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read latency: speculatively reading DRAM without waiting
for the L2 probes to come back. Thus, we are motivated
further to service requests from the LLC, regardless of the
block’s location in the cache hierarchy.

Writes for the CPU and GPU behave differently from each
other. The CPU caches write back evicted blocks whether
they are clean or dirty. The blocks are then stored in the LLC
by the controller. The GPU’s caches, on the other hand, are
write-through caches. Stores to blocks automatically update
all levels of the cache hierarchy, and any evictions from the
GPU’s L2 cache are considered to be write throughs as well.
By default, the LLC is bypassed during a write through, but
a pre-existing option exists to fill the LLC during a write
through. Our technique relies on this option to keep producer-
consumer data in the cache system, and we keep the option
turned on save for experiments aimed at removing the benefits
of our technique which we will describe in Section 4.

When an eviction is necessary in the GPU’s L2, the GPU
only writes dirty blocks through to the LLC. This makes sense
for the GPU which could be reading massive amounts of data,
to not thrash the LLC. However, it creates a problem for
workloads that exhibit Read-Read sharing with a GPU kernel
reading the data first. Since reads by default are not cached in
the LLC and the GPU does not evict clean blocks to the LLC,
the CPU has to read main memory a second time for the same
data. To alleviate this problem, we modified the GPU_VIPER
protocol to be able cache reads in the LLC when it receives a
read request.

3.2 Driver Stack Architecture
Along with AMD’s GCN3 architecture, the new Gem5 simu-
lator also supports AMD’s Radeon Open Compute Platform
(ROCm), which serves as the hardware-software interface
between the workloads and the GPU. ROCm enables com-
munication from user space to the emulated Kernel Fusion
Driver in kernel space (ROCk) by sending command pack-
ets conforming to the HSA specification through software
queues that map to hardware queues on the GPU. The emu-
lated kernel receives the packets and sends them to the GPU’s
command processor which executes various functions accord-
ing to the packet type and sends back a completion signal
when the task has been completed.

For instance, when a user performs a kernel launch through
ROCm, it sends a kernel dispatch packet containing the loca-
tion of the kernel’s code in memory along with its parameters
and an additional completion signal to the GPU command
processor. The command processor then instructs the hard-
ware scheduler to schedule the kernel’s thread blocks to the
GPU’s compute units, and signals that the kernel has been
launched. Finally, when the last thread block of the kernel is

completed, the GPU sends the kernel completion signal back
to user space via the kernel driver.

Custom Scheduling Controller. In order to implement
our thread-block throttling mechanism from Section 2.2, we
exploit a type of HSA command packet, known as an agent
dispatch packet, which contains fields set by the application
that the command processor can read. We customized the
command processor and hardware dispatcher to respond to
two new commands from the agent packet: INJECT_SIGNAL
and FWD_PROGRESS. The INJECT_SIGNAL command
injects a custom HIP signal created by the software interface
and associates that signal with a kernel id. If the hardware
dispatcher sees that a custom signal has been injected for
a particular kernel id, when that kernel is launched with a
normal kernel launch packet, it will not schedule any thread
blocks for execution on the GPU. Instead, when the applica-
tion desires threads blocks to execute on the GPU, it sends the
second type of command, FWD_PROGRESS. This command
instructs the dispatcher to execute a given number of thread
blocks rather than all of the kernel’s thread blocks. The num-
ber of thread blocks executed can be varied by the application
in user space to control the cache footprint of the GPU. When
the last of these thread blocks is completed, the command
processor sends back the custom signal given to it from the
injection command packet.

Using the HSA API significantly reduces the synchroniza-
tion overhead. Across our benchmarks, we find that our cus-
tom synchronization mechanism is roughly an order of mag-
nitude faster than a kernel launch. However, the HSA API
also introduces complexity to programmers who want to use
our optimization technique. To mitigate the complexity as-
sociated with the underlying control scheme, we created a
software interface that abstracts much of the complexity away
from the programmer. The programmer need only wrap an
interface class around the producer-consumer stages in their
application code, and then call the pipeline.

3.3 Benchmarks
We use seven benchmarks, shown in Table 2, to evaluate our
technique. CEDT is the task partitioning version of Canny
Edge Detection; BE performs background extraction in which
a video is passed frame by frame from the CPU to the GPU;
EP is a genetic algorithm that simulates the evolution of
creatures on an island; DWT2D performs a popular digital
signal processing technique called discrete wavelet transform;
Kmeans computes the well-known k-means clustering algo-
rithm; LavaMD performs a 3D molecular dynamics simula-
tion; and SmithWa implements the Smith-Waterman sequence
alignment algorithm. Each of these benchmarks comes from
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Benchmark Suite Input Stage Order
CEDT Chai 2146 x 3826 video GGCC
BE Hetero-Mark 1080p video CG
EP Hetero-Mark 8192 Creatures CGC
DWT2D Rodinia 1125x2436 image CG
Kmeans Rodinia 512K Objects, 34 Features GC
LavaMD Rodinia 1000 boxes, 100 Particles per box CG
SmithWa OMP2012 ref - 1048576 GC

Table 2: Benchmarks used in the experimental evaluation of Pipeline Scheduling for Shared Data Cache Locality.

one of four benchmark suites, as indicated in the second col-
umn of Table 2: Chai [4], Hetero-Mark [12], Rodinia [1], or
SPEC OMP 2012 [10].

The third column of Table 2 reports the program inputs
we used for each benchmark. In most cases, these are the
standard inputs that come with the benchmarks. However, in
CEDT and Kmeans, the standard inputs result in small cache
footprints that fit in the LLC we simulated, so we increased
these input sizes. (For CEDT, we used a higher-resolution
video, and for Kmeans, we generated a larger input using the
dataset generator that comes with the benchmark). We simu-
lated each benchmark by fast-forwarding past its initialization
code, and then turning on detailed models to simulate its
main compute code. The one exception is DWT2D. For this
benchmark, we performed detailed simulation of the file I/O
and pre-processing steps that preceed the main computation.
These initialization steps occur in many image processing
workloads, and give rise to significant CPU-GPU communica-
tion. Although the main computation in DWT2D dominates
execution time, its initialization code could be found in many
different applications, so we believe studying it is still worth-
while.

Finally, the last column in Table 2 shows the structure of
the software pipelines we created for each benchmark. In
most cases, there is a single pipeline from the CPU to the
GPU, or from the GPU to the CPU (where the latter is the
case illustrated in Figure 2 and discussed in Section 2.1). But
there are also more complex pipelines, too. EP contains two
back-to-back pipelines: one from the CPU to the GPU and
than another from the GPU back to the CPU. And for CEDT,
there is an even longer chain of 4 pipelines: two GPU stages
followed by two CPU stages.

4 EXPERIMENTAL EVALUATION
This section presents our experimental results that demon-
strate the effectiveness of pipelined CPU-GPU scheduling.
We begin in Section 4.1 with results on determining the best
run-ahead distance for each of our benchmarks. Then, we
present the memory and performance results in Section 4.2.

Benchmark PTAS TPB RAD-A RAD-E
CEDT 10 256 1639 956
BE 12 64 5462 8192
EP 12,064 256 3 3
DWT2D 12 256 911 256
Kmeans 284 256 58 32
LavaMD 157.04 100 268 500
SmithWa 73 512 112 65

Table 3: Run-ahead distance determined analytically
(RAD-A) and through experimental sweeps (RAD-E).

4.1 Run-Ahead Distance
As discussed in Section 2.1, our technique requires determin-
ing the run-ahead distance (RAD). In particular, our technique
determines the RAD in terms of GPU thread blocks since the
mechansim from Section 2.2 controls the run-ahead distance
by throttling thread blocks. Because the number of threads in
each thread block and the amount of data accessed by each
thread is application specific, each benchmark will have a
different RAD that permits its working set to fit in the LLC
(which is fixed at 4MB, as shown in Table 1).

One way to determine the RAD is through analysis of a
benchmark’s code to identify how much data each thread
accesses, and then compute the number of thread blocks that
could be accommodated in the LLC given the analyzed per-
thread data access size. In Table 3, the column labeled “PTAS”
reports this per-thread access size in bytes for each benchmark
which we acquired manually. Multiplying this value by the
number of threads per thread block (reported in the column
labeled “TPB”) yields the data footprint for a single thread
block from each benchmark. Dividing the LLC capacity by
this value yields the analytical RAD, which we report in the
column labeled “RAD-A” in Table 3.

While the RAD-A results in Table 3 are relatively easy to
compute, they may be inaccurate since the analytical approach
does not take into consideration factors such as limited LLC
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Figure 5: Run-ahead distance (RAD) sweep for the EP
benchmark. X-axis shows RAD in GPU thread-blocks.
Result of optimal RAD shown in green.

associativity nor runtime overhead. To quantify the impact of
such real-world effects on the RAD value, we also ran our
benchmarks on the simulator multiple times, sweeping the
RAD value around the analytically computed values.

For example, Figure 5 shows our RAD sweep experiments
for the EP benchmark. Since Table 3 reports a RAD-A value
of 3 for EP, in Figure 5, we sweep RAD from 2 to 64 (X-axis),
and graph three metrics reported by the simulator: number of
DRAM accesses, execution time, and memory system energy.
(For all three metrics, lower is better). Figure 5a shows that a
smaller RAD value of 2 results in even fewer cache misses and
DRAM accesses; however, greater runtime overhead occurs

with the smaller RAD value, causing execution time and
memory system energy to get worse, as shown in Figures 5b
and 5c. In our work, we use energy as the determiner for
the best RAD value. Based on energy, Figure 5c shows 3 is
indeed the best RAD value for EP.

We performed similar RAD sweep experiments for all the
benchmarks, and identified the best RAD value experimen-
tally. The column labeled “RAD-E” in Table 3 reports these
results. Although the analytically and experimentally com-
puted RAD values for EP are identical, Table 3 shows that
RAD-A and RAD-E are not the same in the other benchmarks.
In some cases they are similar, but in other cases, there can
be a noticeable discrepancy. In our main results reported next,
we use the RAD-E values from Table 3.

4.2 Results
Figure 6 presents the main results of our evaluation. It reports
the simulated results for our technique, pipelined CPU-GPU
scheduling (blue bars), normalized to the default serial execu-
tion (the "1.0" red bars). In the simulations of our technique,
the run-ahead distance maintained within software pipelines
is the experimentally determined RAD-E values from Table 3.
As in Figure 5, results are shown for three separate metrics:
number of DRAM accesses, execution time, and memory
system energy.

In Figure 6a, we see that our technique significantly re-
duces LLC misses and their subsequent DRAM accesses
across all of the benchmarks. At least 9% (DWT2D), and as
much as 61% (CEDT), of the DRAM accesses are eliminated
by our technique. Averaged across all benchmarks, the num-
ber of DRAM accesses goes down by 30.4% compared to
serial execution. This directly quantifies the benefit of keeping
producer-consumer communication within the on-chip cache
hierarchy.

These main memory access savings translate into perfor-
mance gains. On average, Figure 6b shows our benchmarks
enjoy a 26.8% reduction in execution time. Workloads with
CPU consumer stages (CEDT, EP, Kmeans, and SmithWa)
received the largest performance gains, achieving an average
38.8% execution time reduction. Our technique keeps data
meant for CPU consumer stages in the LLC, reducing access
latency which can significantly benefit the latency-sensitive
CPU cores. On the other hand, those workloads with GPU
consumers (BE, DWT2D, LavaMD) did not receive as much
performance gain, achieving a less substantial 10.9% reduc-
tion in execution time. This is to be expected since the GPU
cores are more latency tolerant. For benchmarks with GPU
consumers, the speedups are primarily due to software pipelin-
ing overlap, and not to locality improvement. The benchmark
in Figure 6b with the smallest performance gain, LavaMD,
only achieves a 0.74% reduction in execution time. Not only
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Figure 6: Results for all seven benchmarks. Blue bars
show pipelined CPU-GPU scheduling using the RAD-E
values. Red bars show serial execution.

does LavaMD exhibit GPU consumers, but the GPU stage’s
execution time is much larger than the CPU stage’s execu-
tion time, leaving little opportunity for overlapped pipeline
execution.

Finally, Figure 6c shows that the DRAM access reductions
and performance gains from our technique afford memory
system energy savings. Averaged across all the benchmarks,
we achieve a 27.4% reduction in total DRAM energy. This in-
cludes access energy savings as well as reductions in refresh,
pre-charge, and associated background energies. Again, we
see that the CPU consumer patterns perform better than their

GPU consumer counterparts: a 41.3% reduction in energy on
average compared to only 8.8% on average. Notably, LavaMD
actually receives an increase in total DRAM energy compared
to the serial case. While the access energy goes down propor-
tionally to the savings in accesses, the background energies,
namely precharge and activation background energies, in-
crease when we apply our technique. LavaMD performs a
stencil computation where each block within the calculation
accesses its neighbors and has non-contiguous data structures
to keep track of details about its neighbors. When our tech-
nique is applied, data structures for non-contiguous blocks are
accessed, leading to banks waiting in activated and precharged
states for a longer amount of time.

5 RELATED WORK
Hestness et al. [6] were the first to recognize that pipelining
GPU kernels can improve temporal locality and make use
of the on-chip caches within heterogeneous microprocessors.
However, they do not conduct a detailed study of such locality
transformations. Compared to their work, ours is the first to
present a synchronization mechanism that permits the CPU
to have direct control over GPU execution at an intra-kernel
granularity for the purposes of software pipelining. We are
also the first to present detailed results on the efficacy of
CPU-GPU locality transformations.

Work by Kim et al. [8] recognizes that GPGPU workloads
may consist of multiple dependent stages that include CPU,
GPU kernels, I/O, and copies that constitute pipeline paral-
lelism. They introduce several optimizations in the hardware
and virtual memory system to automatically schedule GPU
thread blocks based on their dependence relationships with
other stages. Rather than study integrated heterogeneous mi-
croprocessors, they investigate these pipeline optimizations
for discrete GPGPU platforms. In contrast, our work stud-
ies integrated CPU-GPU chips, and focuses specifically on
saving energy by reducing superfluous DRAM accesses.

Kayi et al. [7] and Cheng et al. [2] both dynamically de-
tect producer-consumer sharing in chip multiprocessors and
come up with coherence protocol optimizations to programs
exhibiting producer-consumer sharing. They do not examine
GPUs nor the complexities that GPUs introduce to coherence
within producer-consumer sharing patterns.

Finally, several benchmark suites [4, 11, 12] have been
developed in recent years to provide suitable programs to test
heterogeneous chips. Previously, researchers needed to adapt
CPU and traditional GPU benchmarks to glean insights about
heterogeneous chips. These suites contain benchmarks which
exhibit sharing, producer-consumer relationships, synchro-
nization and more. Our research exploits the examples from
these benchmark suites.
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6 CONCLUSION
Heterogeneous microprocessors support efficient communica-
tion between the CPU and GPU. This paper presents pipelined
CPU-GPU scheduling to reduce main memory accesses, a
technique that improves temporal locality on data shared be-
tween the CPU and GPU so that communication can happen
through the on-chip caches rather than main memory. Our
technique breaks the computations performed in the CPU
and GPU into chunks, and executes multiple chunks simul-
taneously in a software pipeline such that the producer of
data executes one chunk ahead of the consumer of the data.
Chunks are sized so that the aggregate CPU-GPU working
set fits in the last-level cache. We develop a novel synchro-
nization mechanism that permits the CPU to directly control
the rate of thread-block scheduling in the GPU in order to
maintain the producer’s run-ahead distance relative to the
consumer. We show through simulation that our technique
reduces the number of DRAM accesses by 30.4%, improves
performance by 26.8%, and lowers memory system energy
by 27.4% on average.
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