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Abstract

Traditionally, fault tolerance researchers have required
architectural state to be numerically perfect for program ex-
ecution to be correct. However, in many programs, even if
execution is not 100% numerically correct, the program can
still appear to execute correctly from the user’s perspec-
tive. Hence, whether a fault is unacceptable or benign may
depend on the level of abstraction at which correctness is
evaluated, with more faults being benign at higher levels of
abstraction, i.e. at the user or application level, compared
to lower levels of abstraction, i.e. at the architecture level.

The extent to which programs are more fault resilient at
higher levels of abstraction is application dependent. Pro-
grams that produce inexact and/or approximate outputs can
be very resilient at the application level. We call such pro-
gramssoft computations, and we find they are common in
multimedia workloads, as well as artificial intelligence (AI)
workloads. Programs that compute exact numerical outputs
offer less error resilience at the application level. However,
we findall programs studied in this paper exhibit some en-
hanced fault resilience at the application level, including
those that are traditionally considered exact computations–
e.g., SPECInt CPU2000.

This paper investigates definitions of program correct-
ness that view correctness from the application’s stand-
point rather than the architecture’s standpoint. Under
application-level correctness, a program’s execution is
deemed correct as long as the result it produces is ac-
ceptable to the user. To quantify user satisfaction, we
rely on application-level fidelity metrics that capture user-
perceived program solution quality. We conduct a detailed
fault susceptibility study that measures how much more
fault resilient programs are when defining correctness at the
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application level compared to the architecture level. Our re-
sults show for 6 multimedia and AI benchmarks that 45.8%
of architecturally incorrect faults are correct at the appli-
cation level. For 3 SPECInt CPU2000 benchmarks, 17.6%
of architecturally incorrect faults are correct at the appli-
cation level. We also present a lightweight fault recovery
mechanism that exploits the relaxed requirements on nu-
merical integrity provided by application-level correctness
to reduce checkpoint cost. Our lightweight fault recovery
mechanism successfully recovers 66.3% of program crashes
in our multimedia and AI workloads, while incurring mini-
mum runtime overhead.

1 Introduction

Technology scaling–including feature size, voltage, and
clock frequency scaling–has brought tremendous improve-
ments in performance over the past several decades. Un-
fortunately, these same trends will make computer systems
significantly more susceptible to hardware faults in the fu-
ture, resulting in reduced system reliability. Sources of
hardware faults include soft errors [23], wearout [29], and
process variations [19]. In anticipation of the reduced re-
liability that further technology scaling will bring, com-
puter architects have recently focused on several important
fault tolerance issues. Areas of focus include characteriz-
ing fault susceptibility [18], and developing low-cost fault
detection [2, 9, 25, 26] and recovery [32] techniques.

Fundamental to all such reliability research is the defini-
tion of correct program execution. In the past, researchers
have made very strict assumptions about program correct-
ness. Traditionally, a program’s execution is said to be cor-
rect only if architectural state is numerically perfect on a
cycle-by-cycle basis. A similar (though slightly looser) no-
tion of correctness requires a program’s visible architectural
state–i.e., its output state–to be numerically perfect. In both
cases, correctness requires precise numerical integrity at the
architecture level, a fairly strict requirement.

An interesting question is: must we require strict numer-
ical correctness for overall program execution to be cor-
rect? In many programs, even if execution is not 100%



numerically correct, the program can stillappearto exe-
cute correctly from the user’s perspective. Although such
numerically faulty executions do not pass the muster of
architecture-level correctness, they may be completely ac-
ceptable at the user or application level. Hence, whether
a fault is intolerable or benign may depend on thelevel of
abstractionat which correctness is evaluated. In general,
more faults are acceptable at higher levels of abstraction,
i.e.at the application level, compared to lower levels of ab-
straction,i.e.at the architecture level.

How much more fault resilient are programs at the ap-
plication level? The answer to this question is application
dependent, and primarily depends on how numerically ex-
act a program’s outputs need to be. For instance, programs
that process human sensory and perception information are
highly fault resilient at the application level. An important
example is multimedia workloads. Another example is arti-
ficial intelligence workloads (e.g., reasoning, inference, and
machine learning), which have become increasingly impor-
tant recently [8]. These programs belong to a class of com-
putations which we callsoft computations[20, 10].1 Soft
computations compute on approximate data values associ-
ated with qualitative results, making them highly fault re-
silient because errors in numerical results seldom change
theuser’s interpretationof those numerical results. In con-
trast, programs whose correctness are tied directly to the nu-
merical values they compute may offer little error resilience
at the application level. Certain lossless data compression
algorithms are examples of such programs. While the de-
gree of error resilience at the application level varies across
applications, we findall programs studied in this paper ex-
hibit some enhanced fault resilience at the application level,
including those that are traditionally considered as exact
computations–e.g., SPECInt CPU2000.

This paper explores definitions of program correctness
that view correctness from the application’s standpoint
rather than the architecture’s standpoint. Underapplication-
level correctness, a program’s execution is deemed correct
as long as the result it produces is acceptable to the user.
In other words, correctness depends on theuser’s inter-
pretationof a program’s numerical result, not the numer-
ical result itself. To quantify user satisfaction, we rely on
application-level fidelity metrics that capture program solu-
tion quality as perceived by the user. Because the notion of
solution quality is different across applications, our fidelity
metrics are application specific, though applications from
the same domain may share common fidelity metrics.

Our goal is to understand how application-level correct-
ness impacts a system’s susceptibility to faults, especially

1The term “soft computation” is normally used to describe artificial in-
telligence algorithms. In this paper, we use the term to describe multimedia
workloads as well because we find they exhibit similar inexact computing
properties as the A.I. algorithms.

transient faults or soft errors. The centerpiece of our work
is a detailed fault injection study that quantifies how much
more resilient programs are to soft errors at the applica-
tion level compared to the architecture level. Our study
injects 156,205 faults into a detailed architectural simula-
tor, and performs 27,067 separate runs to program comple-
tion. For soft computations, we find 45.8% of fault injec-
tions that lead to architecturally incorrect execution produce
acceptable results under application-level correctness.For
SPEC programs, a smaller portion of architecturally incor-
rect faults, 17.6%, produce acceptable results at the appli-
cation level. In addition to studying fault susceptibility, we
also present a lightweight fault recovery mechanism that
exploits the relaxed requirements on numerical integrity
provided by application-level correctness to reduce check-
point cost. Our technique checkpoints some minimum state
needed to recover after a crash, but omits from checkpoints
those data values for which the user can tolerate numeri-
cal imprecision. Although our lightweight fault recovery
mechanism is not fail-safe, it successfully recovers 66.3%
of program crashes in our multimedia and AI workloads,
while incurring extremely low runtime overhead.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses our definitions of application-level correct-
ness. Then, Section 3 presents our experimental method-
ology and Section 4 reports our fault susceptibility study.
Next, Section 5 describes our lightweight recovery mech-
anism. Finally, Section 6 presents related work, and Sec-
tion 7 concludes the paper.

2 Application-Level Correctness
This section presents our application-level correctness

definitions. We begin by discussing soft program out-
puts, an important property for application-level correctness
(Section 2.1). Then, we present fidelity metrics that quan-
tify application-level correctness for the benchmarks stud-
ied in this paper (Section 2.2). Finally, we discuss limita-
tions of our approach (Section 2.3).

2.1 Soft Program Outputs

Programs can exhibit enhanced error resilience at the ap-
plication level compared to the architecture level for many
reasons. However, the likelihood of this happening in-
creases when a program permitsmultiple valid outputs. In
this paper, we say such programs have “soft outputs.” Soft
outputs commonly occur in programs computing results
that are interpreted qualitatively by the user. Different nu-
merical results can lead to the same or similar qualitative
interpretation. Hence, multiple numerical outputs may be
acceptable to the user. Another source of soft outputs is
heuristic-based algorithms. Many programs solve complex
problems for which optimal solutions are unachievable. In-
stead of the optimal, they try to find the best solutions pos-
sible given available computational resources. In practice,



many solutions are “good enough.” So, once again, multiple
numerical outputs are acceptable to the user.

Soft outputs offer new opportunities for optimizing fault
tolerance. In particular, faults that cause a program to sim-
ply generate one of its multiple valid outputs are completely
benign. It is unnecessary to protect against such faults, al-
lowing designers to reduce the cost of fault protection. For
example, in Section 5, we will study a lightweight fault re-
covery technique that omits from checkpointing the data
that only contribute to soft program outputs (since these
data are highly error tolerant), thus reduces checkpoint cost.

To illustrate the soft output property, Table 1 lists 9
benchmarks used in our study–three from the multime-
dia domain, three from the artificial intelligence (AI) do-
main, and three from SPECInt CPU2000. The multime-
dia workloads, G.721-D, JPEG-D, and MPEG-D are taken
from the Mediabench suite [15], and perform audio, im-
age, and video decompression, respectively. All three de-
compression algorithms are lossy. The AI workloads are
from various sources. LBP performs Pearl’s Loopy Be-
lief Propagation [22], a well-known message-passing al-
gorithm for approximate inference on large Markov net-
works. Our LBP implementation solves Taskar’s Relational
Markov Network applied to a web-page classification prob-
lem [30]. SVM-L is the learning portion of a Support Vector
Machine algorithm, called SVMlight [11]. SVM-L learns
the parameters for a support vector (SV) model on a train-
ing dataset. GA is a genetic algorithm applied to multipro-
cessor thread scheduling [12]. Given a thread dependence
graph, GA searches for a thread schedule that minimizes
execution time. Finally, the SPECInt CPU2000 workloads
are 164.gzip and 256.bzip2, two lossless data compression
algorithms, and 175.vpr, a place-and-route program. (The
data inputs we use for vpr only perform placement–see Ta-
ble 3 in Section 3).

The second column of Table 1 reports the numerical out-
puts computed by each benchmark. As we will show,all of
these numerical outputs are soft, so multiple valid outputs
exist. In most cases, the soft outputs are due to the quali-
tative nature of the program results. When appropriate, we
indicate this in the third column, labeled “Qualitative Out-
put.” Many of our benchmarks also achieve soft outputs
because they are heuristic-based; some examples of this are
discussed below.

For the three multimedia programs, the numerical out-
puts are the decompressed datafiles, either in audio, image,
or video format. Once decompressed, these datafiles can
be played back to the user; hence, the qualitative output of
these programs is the perceived playback, either aural or vi-
sual, of the numerical outputs. Because the user’s playback
experience is qualitative in nature, it is possible for different
numerical outputs to be acceptable (i.e., valid) to the user.

Like the multimedia workloads, the AI workloads also

Bench Num. Out Qual. Out Fidelity Metric
Multimedia

G.721-D Decompressed Perceived Segmental
audio datafile audio Signal-to-Noise

Ratio (SNRseg)
JPEG-D Decompressed Perceived Peak

image datafile image Signal-to-Noise
Ratio (PSNR)

MPEG-D Decompressed Perceived Peak
video datafile video Signal-to-Noise

Ratio (PSNR)
Artificial Intelligence

LBP Network Web Page % Classification
belief values Class Types Change

SVM-L Support Test Data % Classification
Vector Model Class Types Change

GA Thread - % Schedule
Schedule Length Change

SPECInt CPU2000
164.gzip Compressed - Compression

file Ratio
256.bzip2 Compressed - Compression

file Ratio
175.vpr Cell - Consistency

placement Check

Table 1. Numerical and qualitative outputs computed
by our benchmarks. The last column lists the fidelity
metrics used to quantify solution quality.

exhibit soft program outputs. In LBP, nodes in the Markov
network contain probability distribution functions (PDFs)
over the possible class types inferred for web pages. Each
PDF encodes how strongly we “believe” a particular web
page belongs to each class type. The numerical output for
LBP, hence, is the collective belief values across the entire
Markov network. In SVM-L, the numerical output is the
SV model parameters learned from the training dataset, as
described earlier. Both LBP and SVM-L’s numerical out-
puts are soft because they are used to derive classification
answers, the qualitative output for these programs. LBP se-
lects a class type for each web page by choosing the most
likely class indicated by the corresponding PDF. For SVM-
L, extracting class types is more involved because SVM-
L itself doesn’t perform classification. To obtain the class
types we want, we run a separate SVM classifier (not listed
in Table 1) that uses the SV model computed by SVM-L
to perform classification on a test dataset. Computing the
classification answers in both LBP and SVM-L is an ex-
tremely inexact process. Multiple numerical outputs (belief
values for LBP and SV model parameters for SVM-L) can
lead to the same (and hence, valid) classification answer. In
GA, the numerical output is the thread schedule it computes.
GA’s numerical output does not have a qualitative interpre-
tation; however, users can still accept multiple numerical
outputs because GA is a heuristic algorithm. Although it is
infeasible to find the optimal thread schedule, in practice,
there are many thread schedules that are adequate. Any one
of these good enough answers represents a valid numerical



output from the user’s perspective.
Somewhat surprisingly, the three SPEC program outputs

are also soft, though we do not call the SPEC benchmarks
soft computations. As indicated in Table 1, none of the
SPEC outputs have qualitative interpretations; nonetheless,
multiple numerical outputs are valid. For the data com-
pression algorithms, there is flexibility in how datafiles are
compressed even though the compression algorithms them-
selves are exact. We will discuss the reasons for this in
Section 4. The vpr benchmark tries to find a cell block
placement for a chip design. Like GA, vpr’s algorithm
is heuristic-based since finding an optimal placement (one
that minimizes interconnect distance) is intractable. Hence,
multiple cell block placements are valid.

Finally, while all the benchmarks in Table 1 exhibit soft
outputs, it is important to note there are also programs for
which multiple valid outputs do not exist. For example,
sorting algorithms (e.g., quicksort) permit only one correct
answer. Thus, there is little or no additional error resilience
that can be exploited at the application level. We do not con-
sider such programs in this paper since our goal is to char-
acterize and exploit application-level error resilience where
it exists. Although studying the extent to which soft out-
puts occur in programs is certainly an important direction
of research, it is beyond the scope of this work.

2.2 Solution Quality

Because the benchmarks in Table 1 permit multiple valid
numerical outputs, their correctness is not simply “black or
white;” hence architecture-level correctness (where all ar-
chitectural values are either correct or wrong) is clearly too
strict. An appropriate correctness definition should accom-
modate all valid numerical outputs. At the same time, it
is important to recognize not all valid outputs are of equal
value; instead, there are varying degrees of solution quality
across our programs’ outputs.

We use application-specific fidelity metrics to capture
the quality of a program’s output as perceived by the user.
Our fidelity metrics quantify how different a particular out-
put is relative to a baseline output. (For the experiments
in Sections 4 and 5, we define the baseline output to be
the result obtained from a fault-free execution of a given
benchmark). Outputs that are very similar to the baseline
have high fidelity, whereas outputs that are very dissimilar
have low fidelity. Whenever possible, we compute fidelity
in terms of a benchmark’s qualitative outputs instead of its
numerical outputs. This enables us to capture fidelity of the
user’s qualitative experience, an important correctness con-
sideration for many of our benchmarks.

The last column in Table 1 lists the fidelity metrics
we use for our 9 benchmarks. For the multimedia work-
loads, we use signal-to-noise ratio (SNR). Specifically, we
use segmental SNR (SNRseg) for G.271-D, and peak SNR

(PSNR) for JPEG-D and MPEG-D. For LBP and SVM-L,
we use the percentage change in classification answers, and
for GA, we use the percentage change in thread schedule
length (i.e., execution time). For the two data compression
algorithms, we use the compression ratio.2 Lastly, vpr’s fi-
delity metric is a consistency check provided by the code
itself. This consistency check first determines whether a
given cell block placement is valid (i.e., doesn’t violate any
design rules), and then computes a cost metric that reflects
the degree to which interconnect distance is minimized.
Placements that can’t pass the consistency check are incor-
rect.

Given the fidelity metrics in Table 1, application-level
correctness can be defined by choosing the minimum fi-
delity that is “acceptable” to the user: outputs of equal
or higher quality than the minimum fidelity satisfy the
user’s requirement and are considered correct, while out-
puts of lower quality than the minimum fidelity are con-
sidered incorrect. An important question, then, is how do
we determine the minimum fidelity threshold against which
application-level correctness is measured? Unfortunately,
minimum fidelity thresholds are extremely user-dependent.
In practice, different users may desire different levels ofso-
lution quality (in fact, thesameuser may be able to live with
varying levels of solution quality under different circum-
stances), so it is impossible to define one threshold that ap-
plies universally. Instead, users should be allowed to select
the threshold that best fits their correctness requirements.
As we will see in Section 4, this provides designers with
the unique opportunity to tradeoff solution quality for fault
tolerance, depending on how good a solution the user needs.

While minimum fidelity thresholds are user-dependent,
nonetheless, we must choose a specific set of threshold val-
ues for the experiments conducted later in this paper. Sec-
tion 3 will discuss how we choose minimum fidelity thresh-
olds for our experiments.

2.3 Limitations

A limitation of application-level correctness is it only
considers program outputs visible to the user. It does not
account for other correctness issues unrelated to visible pro-
gram outputs. For example, we do not consider real-time is-
sues. Certain errors may not degrade solution quality appre-
ciably, but they may alterwhensolutions become available.
This is unacceptable for the correctness of real-time sys-
tems. In addition, we do not consider system-level issues.
Errors that do not defeat individual benchmarks may still
propagate to other programs in a multiprogrammed environ-
ment, causing them to crash or execute incorrectly. Lastly,it
may still be necessary to provide architecture-level correct-
ness in cases where architecture state is exposed to the user

2Note, due to their lossless nature, compressed outputs thatcannot
identically reproduce the original datafile are deemed as incorrect, regard-
less of the compression ratio.



Processor Parameters
Bandwidth 8-Fetch, 8-Issue, 8-Commit
Queue size 64-IFQ, 40-Int IQ, 30-FP IQ, 128-LSQ

Rename reg/ROB 128-Int, 128-FP / 256 entry
Functional unit 8-Int Add, 4-Int Mul/Div, 4-Mem Port

4-FP Add, 2-FP Mul/Div

Branch Predictor Parameters
Branch predictor Hybrid

8192-entry gshare/2048-entry Bimod
Meta table 8192 entries
BTB/RAS 2048 4-way / 64

Memory Parameters
IL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
DL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat
UL2 config 1Mbyte, 64byte block, 4 way, 20 cycle lat
Mem config 300 cycle first chunk, 6 cycle inter chunk

Table 2. Parameter settings for the detailed architec-
tural model into which we inject faults.

(e.g., program debugging). In all these cases, application-
level correctness is not strict enough and does not provide
the desired correctness requirements.

3 Experimental Methodology

Having presented our definitions of application-level
correctness, we now quantify how much more fault resilient
programs are under application-level correctness compared
to architecture-level correctness. This section discusses the
experimental methodology used in our fault susceptibility
study. Later, Section 4 will present the study’s results.

To analyze fault susceptibility, we conduct fault injection
experiments [14, 25, 34] to observe the effects of faults on a
CPU under different definitions of correctness. Each of our
fault injection experiments injects a single bit flip into the
execution of one of our benchmarks–i.e., we assume a sin-
gle event upset, or SEU, fault model. Our approach closely
follows the methodology introduced by Reiset. al. [25].
We initially inject faults into a detailed architectural sim-
ulator that models a modern out-of-order superscalar. After
each fault is injected, we simulate the microarchitecture un-
til the fault completely manifests itself in architecturalstate.
Then, we checkpoint the simulator’s architectural state, and
resume simulation from the checkpoint using a simple func-
tional simulator. We try to run the benchmark to completion
under the functional CPU model, and assuming the bench-
mark doesn’t crash, we evaluate the program’s outputs un-
der both architecture- and application-level correctness.

In the detailed simulation phase, we use a modified ver-
sion of the out-of-order processor model from Simplescalar
3.0 for the PISA instruction set [5], configured with the
simulator settings listed in Table 2. Compared to the orig-
inal, our modified simulator models rename registers and
issue queues separately from the Reservation Update Unit
(RUU). Using this processor model, we inject faults into
three hardware structures: the physical register file, the

fetch queue, and the issue queue (IQ).3 Faults injected into a
physical register will appear in architectural state unless the
register is idle or belongs to a mispeculated instruction. For
the fetch queue, we allow faults to corrupt instruction bits,
including opcodes, register addresses, and immediate spec-
ifiers. These faults manifest in architectural state as long
as the injected instruction is not mispeculated. Lastly, for
the IQ, we model 6 fields per entry: instruction opcode,
3 register tags (2 source and 1 destination), an immediate
specifier, and a PC value. Like the fetch queue, faults in the
IQ appear in architectural state for instructions that are not
mispeculated. Corruptions to the IQ opcode and immediate
fields behave similarly to corresponding corruptions in the
fetch queue. Corruptions to the register tags alter instruction
dependences, and corruptions to the PC value affect branch
target addresses.

When simulating in detailed mode, two issues affect the
collection of checkpoints for subsequent functional simula-
tion. First, not all fault injections require functional simu-
lation to program completion. Some faults are masked by
the microarchitecture, and do not propagate to architectural
state. Other faults incur exceptions or lockups. (We rely
on a watchdog timer to detect lockups). In these cases, we
simply record the outcome, and skip the functional simu-
lation phase. Second, faults in the out-of-order portion of
the processor pipeline (i.e., the physical register file and IQ)
can manifest in architectural state in an imprecise manner.
For example, a corrupted register value may propagate to
some instructions (those that haven’t issued yet) but not to
others (those that have already issued). Our detailed simu-
lator records these out-of-order effects. Then, when simu-
lating the initial instructions in functional mode (i.e., those
that were in-flight at the time of the fault), we propagate
the injected fault to exactly the same instructions that were
affected during out-of-order simulation.

Table 3 presents detailed fault injection information for
each of our benchmarks described in Section 2. The col-
umn labeled “Input” specifies the input dataset used for each
benchmark, and the column labeled “Exec Time” reports
each benchmark’s measured execution time in cycles on our
detailed out-of-order simulator. We inject faults only after
program initialization, so “Exec Time” does not include the
benchmarks’ initialization phase. After program initializa-
tion, we run each benchmark to completion in our detailed
simulator, performing all fault injections and checkpoints
for a single hardware structure in the same run. We perform
3 such injection runs on each benchmark to inject faults into
the 3 hardware structures (i.e., physical register file, fetch
queue, and IQ). In each run, faults are randomly injected

3For both the physical register file and issue queue, our simulator mod-
els separate integer and floating point versions of the structures. However,
when injecting faults, we distribute the faults uniformly across both ver-
sions as if they formed a unified structure.



Bench Input Exec Time Interval Injects Regfile Fetch Issue
G.721-D clinton.pcm 77643471 7000.0 10467 483 (0.05) 581 (0.06) 1183 (0.11)
JPEG-D lena.ppm 44520776 7000.0 5950 542 (0.09) 4341 (0.73) 1483 (0.25)
MPEG-D mei16v2.m2v 40457756 7000.0 5413 713 (0.13) 434 (0.08) 803 (0.15)
LBP WebKB [30] 2175526139 1000000.0 2198 1317 (0.60) 946 (0.43) 589 (0.27)
SVM-L a1a(a1a) [6] 53981768 7000.0 7225 1138 (0.16) 2327 (0.32) 1564 (0.22)
GA r16-0.1.in(a1a) [12] 127490411 15000.0 8491 479 (0.06) 626 (0.07) 1352 (0.16)
164.gzip input.compressed 93396309 15000.0 6693 467 (0.07) 829 (0.12) 861 (0.13)
256.bzip2 input.compressed 732651712 250000.0 2941 264 (0.09) 1559 (0.53) 722 (0.25)
175.vpr test 800450837 250000.0 3177 968 (0.30) 166 (0.05) 330 (0.10)

Table 3. Fault injection statistics. “Exec Time” reports ex ecution time in cycles. “Interval” reports the average time
between fault injections. “Injects” reports the total numb er of faults injected into the physical register file. The
last 3 columns report the number of functional simulation ru ns for each of the 3 hardware structures.

into a single hardware structure one after another using a
uniformly distributed inter-fault arrival time.

It is crucial to limit the total number of fault injections
since each fault potentially requires functional simulation to
program completion. Our methodology limits the number
of injected faults in two ways. First, we choose program in-
puts that do not result in exceedingly long execution times.
Second, we set the inter-fault arrival time based on each
benchmark’s execution time. We use larger arrival times for
longer-running benchmarks, thus reducing the number of
injected faults for benchmarks with longer execution times.
The column labeled “Interval” in Table 3 reports the inter-
fault arrival time used for each benchmark, while the col-
umn labeled “Injects” reports the total number of injected
faults for the physical register file. (The number of injected
faults for the other two hardware structures is very simi-
lar since they use the same inter-fault arrival time. More
specifically, the total number of injected faults is 52,555 for
physical register file, 52,229 for fetch buffer, and 51,421
for IQ). Across all 3 hardware structures, our fault injection
campaign performs 156,205 fault injections.

In addition to how we inject faults, another important
methodology issue is what standard do we use to assess
application-level correctness? As discussed in Section 2.2,
application-level correctness is defined by the minimum fi-
delity threshold that is “acceptable” to the user. In our ex-
periments, we define two fidelity thresholds for this pur-
pose: “high” and “good.” The high threshold corresponds
to program outputs of extremely high quality, with no no-
ticeable solution quality degradation compared to a fault-
free execution. The good threshold corresponds to program
outputs with only slightly (barely noticeable) degraded so-
lution quality compared to a fault-free execution. Although
we define two separate thresholds, in our analysis, we con-
sider any program output that meets the good threshold as
being correct under application-level correctness (i.e., the
good threshold is our minimum fidelity threshold).

We quantify the high and good thresholds for each fi-
delity metric in Table 1 as follows. For the SNRseg and
PSNR metrics associated with our multimedia benchmarks,

we define high and good outputs to be greater than 90dB
and between 50dB and 90dB, respectively, when compared
to outputs from fault-free execution. We aurally and visu-
ally compared faulty and fault-free outputs to select these
thresholds so that they conform qualitatively to the high
and good standards described above. Also, we confirmed
quantitatively that the good threshold is equal to or better
than what is accepted by the signal processing community
as constituting a “barely noticeable” difference [3, 7]. For
all other fidelity metrics, we define high and good outputs
to be within 1% and 5%, respectively, of the program out-
puts obtained via fault-free execution. Unfortunately, we
were unable to find any standards in the literature against
which to compare these thresholds, so we chose them to be
conservative. For our AI benchmarks, the fault-free outputs
themselves are erroneous (the AI benchmarks only compute
approximate solutions). In all cases, the fault-free outputs
are off by 15% or more compared to perfect solutions ob-
tained off-line. Hence, 1% and 5% represent small addi-
tional errors on top of the benchmarks’ baseline errors. For
the SPEC benchmarks, there is no quantitative justification
for our high and good thresholds; we chose 1% and 5% be-
cause we believe these represent small increases in file size
(for gzip and bzip) and average wire length (for vpr).

4 Fault Susceptibility

This section discusses our fault susceptibility study in
two parts. First, Section 4.1 presents the fault injection re-
sults. Then, Section 4.2 analyzes the sources of increased
error resilience at the application level.

4.1 Fault Injection Results

Our first result is only a portion of fault injections man-
ifest themselves in architectural state because many faults
are masked by the microarchitecture. Microarchitecture-
level masking [18] arises due to faults that attack idle hard-
ware resources, or hardware resources occupied by mispec-
ulated instructions. The last three columns in Table 3 re-
port the number of faults injected into the physical register
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(“Incorrect”), exception or program lockup (“Crash”), and early program exit (“Terminate”).

file, fetch queue, and IQ, respectively, that become archi-
tecturally visible. In parentheses, we report the same data
as a fraction of the total injected faults (i.e., the column la-
beled “Injects”). As Table 3 shows, the degree of masking
varies considerably across different benchmarks and hard-
ware structures. But on average, only 17.3% of injected
faults (27,067 out of 156,205) become architecturally visi-
ble, with the fetch queue exhibiting the most fault sensitivity
(22.6%) and the register file and IQ exhibiting less sensitiv-
ity (12.1% and 17.3%, respectively). Faults that are masked
by the microarchitecture produce correct program outputs
under both architecture- and application-level correctness.

Next, we examine the architecturally visible faults in
more detail. Figure 1 breaks down the outcome of all archi-
tecturally visible fault injections when they are simulated
to program completion. For each benchmark, we report the
fault injections into the physical register file, fetch queue,
and IQ separately in a group of 3 bars labeled “R,” “F,”
and “I,” respectively. Each bar contains 6 categories. The
first category, labeled “Architecture,” indicates the program
outputs that pass architecture-level correctness (these out-
puts are also correct at the application level). The next two
categories, labeled “Application-High” and “Application-
Good,” indicate the additional program outputs that are ac-
ceptable under application-level correctness only, assuming
the “high” and “good” thresholds described in Section 3.
The category labeled “Incorrect” indicate outcomes that
are either invalid or unacceptable under both architecture-
and application-level correctness. Finally, the last two cat-
egories indicate experiments that fail to complete during
functional simulation due to an exception or a program
lockup (labeled “Crash”) or early program exit with an error

(labeled “Terminate”). The last 3 groups of bars in Figure 1
report the average breakdowns for the multimedia, AI, and
SPEC benchmarks, respectively.

Looking at Figure 1, we see a large portion of architec-
turally visible faults lead to correct program outputs un-
der architecture-level correctness (i.e., the “Architecture”
components). The last 3 groups of bars in Figure 1 show
architecture-level correctness is achieved in 50.4% to 60.1%
of program outputs on average across the 3 hardware struc-
tures for the multimedia and SPEC benchmarks, and in
61.0% to 68.8% on average for the AI benchmarks. Sim-
ilar to microarchitecture-level masking, many fault injec-
tions attack architectural state unnecessary for maintaining
numerical integrity in our computations, and hence, become
architecturally masked [18]. In our benchmarks, the pri-
mary source of architecture-level masking is logical and in-
equality instructions. These instructions rarely change their
outputs despite corruptions to their input operands; thus,
they are highly resilient to faults. Other (less significant)
sources of architecture-level masking include dynamically
dead code, NOP instructions, and Y-branches [33].

The remaining fault injections that are not masked at
the microarchitecture or architecture levels do not pro-
duce numerically correct program outputs. These fault
outcomes have traditionally been consideredincorrect un-
der architecture-level correctness. Across all benchmarks
and all hardware structures, 41.2% of architecturally vis-
ible fault injections on average are architecturally incor-
rect. However, we find a significant portion of architec-
turally incorrect outcomes produce high-quality solutions.
This is particularly true for the multimedia and AI bench-
marks, our soft computations. As the first group of aver-



age bars in Figure 1 show, 55.0%, 54.8%, and 56.8% of
architecturally incorrect faults for multimedia benchmarks
occurring in the physical register file, fetch queue, and IQ,
respectively, produce program outputs with either high or
good fidelity (i.e., the “Application-High” or “Application-
Good” components). As the second group of average bars
show, 40.4%, 33.8%, and 34.0% of architecturally incorrect
faults for AI benchmarks occurring in the same three hard-
ware structures, respectively, produce high or good fidelity
program outputs as well. While these program outputs are
incorrect numerically, they are completely acceptable from
the user’s standpoint–i.e., they are correct at the application
level. Overall, 45.8% of architecturally incorrect faultsin
our soft computations achieve application-level correctness.

In addition to soft computations, we find the SPEC
benchmarks also exhibit enhanced fault resilience at the ap-
plication level. As the last group of bars in Figure 1 shows,
26.2%, 15.5%, and 11.1% of architecturally incorrect faults
for the SPEC benchmarks occurring in the physical register
file, fetch queue, and IQ, respectively, produce program out-
puts with either high or good fidelity. These gains are much
more modest than those for our multimedia and AI bench-
marks. However, we believe the fact that application-level
correctness provides any additional fault resilience in SPEC
is a positive result given these benchmarks are traditionally
considered as exact computations.

4.2 Error Resilience Analysis

The majority of faults leading to the “Application-High”
and “Application-Good” categories in Figure 1 occur on
computations related to soft outputs. As discussed in Sec-
tion 2.1, such computations are error resilient since they
still have a high likelihood of generating acceptable answers
in the face of faults. For example, JPEG-D and MPEG-
D perform inverse DCT and quantization, while G.721-D
performs adaptive prediction and quantization. Even in the
absence of faults, these computations incur small errors due
to rounding and their lossy nature. To such computations,
faults act like additional errors, and are often tolerable.
Compared to the multimedia workloads, our AI programs
do not perform lossy operations. Nevertheless, their com-
putations are still highly resilient to faults. As discussed in
Section 2.1 for LBP and SVM-L, very little precision in the
output data (i.e., belief values or SV model parameters) is
needed to derive the correct qualitative answers (i.e., clas-
sifications). Therefore, a large number of faults on belief
and SV parameter computations can be tolerated as long as
they do not affect the most significant bits of the data. Al-
though many soft computations are highly error resilient,
one notable exception is GA. As discussed in Section 2.1,
GA exhibits soft outputs due to its heuristic nature. How-
ever, upon closer examination, we found GA spends most
of its time evaluating an objective function that reflects the

cost of a given thread schedule. Unfortunately, this objec-
tive function is not a soft computation, thus reducing the
benefits of application-level correctness.

Our study also shows the SPEC benchmarks can tolerate
faults. As mentioned in Section 2.1, gzip and bzip2’s pro-
gram outputs are soft due to flexibility in how datafiles can
be compressed. We found certain faults cause these com-
pression algorithms to emit different output tokens com-
pared to a fault-free execution. While these output tokens
do not achieve as high a compression ratio, they still cor-
rectly encode their corresponding input tokens. Hence,
a numerically different (slightly larger) compressed file is
created, but the exact original file can still be recovered via
decompression. In vpr, as already discussed in Section 2.1,
the source of soft program outputs is multiple valid cell
block placements. Some of our fault injections cause vpr
to produce these different cell block placements, and are
thus acceptable.

5 Fault Recovery

Section 4 demonstrates many architecturally incorrect
faults are acceptable when evaluated at the application level.
However, even after considering application-level correct-
ness, a large number of faults still lead to incorrect program
outcomes–i.e., the “Incorrect,” “Crash,” and “Terminate”
components in Figure 1. Of these, by far the most signif-
icant is the “Crash” component. Across all experiments,
crashes account for 80.8% of faults on average that are in-
correct at both the architecture and application levels.

Addressing crashes requires detecting the corresponding
faults, and recovering from them. Since crashes consist
of exceptions and program lockups, detection is straight-
forward: exceptions are intercepted by the operating sys-
tem4 while lockups can be flagged by a CPU watchdog
timer. No significant hardware support nor runtime over-
head need be incurred for detection. Recovery, on the other
hand, can be more costly. Normally, recovery is performed
via checkpoints. However, checkpoints incur runtime over-
head for copying, either at pre-determined checkpoint loca-
tions, or upon first writes (e.g., copy-on-write schemes).

5.1 Lightweight Recovery Mechanism

Under application-level correctness, we do not need to
checkpoint the whole program state. Instead, only data that
is necessary to restart program execution after a crash needs
to be saved. Program state that only contribute to soft out-
puts do not need to be saved, thus reducing both check-
point size and runtime overhead. The key question, how-
ever, is how do we identify the state that requires check-

4We assume all terminating exceptions are due to soft errors (i.e., pro-
grams are assumed to be bug free), so we initiate recovery forall of them.
In addition, we assume the OS will not trigger recovery for non-fatal ex-
ceptions, but instead will process them normally.



pointing to satisfy application-level correctness? We exam-
ined several program crashes, and found in most cases pro-
gram restart can occur simply with a valid program counter
(PC) plus the correct stack state at the associated program
control point. Hence, we developed a lightweight recov-
ery mechanism that periodically checkpoints the PC, archi-
tected register file, and program stack. Upon a crash, we
restart the program at the nearest checkpoint, rolling back
its PC, register file, and stack only–we do not touch the pro-
gram text, static data, or heap during rollback. To determine
when checkpoints are taken, we identify the main control-
ling loops in our benchmarks (usually the outer loops asso-
ciated with major program phases), and instrument check-
pointing at the top of each loop iteration. In this paper,
we instrument checkpointing manually, though it should be
possible to insert the checkpointing code automatically us-
ing compiler techniques [16].

Notice, our lightweight recovery mechanism cannot suc-
cessfully recover all crashes because it does not guarantee
all the state necessary for program restart is checkpointed.
A fail-safe version of our technique would need to precisely
identify the state associated with soft program outputs, and
only omit these data from checkpoints. Nonetheless, as the
next section will show, our lightweight recovery mechanism
can still recover a significant number of crashes.

5.2 Recovery Results

We evaluate our lightweight recovery mechanism us-
ing the functional simulator from our two-phase simulation
methodology (see Section 3). First, we run checkpoint-
instrumented versions of our benchmarks on the functional
simulator once to acquire all the checkpoints. Table 4 re-
ports statistics from these checkpoint runs. The columns
labeled “# Check,” “Interval,” and “Size” report the total
number of checkpoints, the average number of instructions
between checkpoints (excluding instrumentation code), and
the average checkpoint size, respectively. In parenthesis,
we also report the average checkpoint size as a fraction of
the total program size. Because we only checkpoint the
PC, register file, and stack, our checkpoints are extremely
lightweight. On average, our checkpoints are roughly 2
Kbytes in size, with consecutive checkpoints separated by
400,000 instructions or more. Since we acquire our check-
points on the functional simulator, we have not measured
the actual runtime cost of our checkpoints; however, we es-
timate a 1% runtime overhead at worst.

After acquiring all the checkpoints, we perform recovery
experiments. For every crash outcome in Figure 1, we roll-
back to the nearest checkpoint, as described in Section 5.1,
and restart execution in our functional simulator. Then, we
try to run the benchmark to completion, and assuming the
benchmark doesn’t crash again, we evaluate the program’s
outputs under both architecture- and application-level cor-

Bench # Check Interval Size
G.721-D 261 1003622 566 (0.01804)
JPEG-D 59 503137 3360 (0.00397)
MPEG-D 60 2934834 664 (0.00092)
LBP 50 47197236 700 (0.00012)
SVM-L 430 404591 1944 (0.00195)
GA 300 1108510 1282 (0.00003)
164.gzip 252 964376 1108 (0.00036)
256.bzip2 1529 2019708 3462 (0.00036)
175.vpr 2995 505182 3720 (0.01869)

Table 4. Checkpoint statistics. The last 3 columns re-
port total checkpoints taken, average interval size (in
instructions), and average checkpoint size (in bytes).

rectness, just as we did in Section 4. Figure 2 breaks down
the outcome of our recovery experiments. For each bench-
mark, we report the recovery outcome for crashes from the
physical register file, fetch queue, and IQ fault injections
separately in a group of 3 bars labeled “R,” “F,” and “I,”
respectively. Each bar is broken down into the same cate-
gories as Figure 1 minus the “Terminate” category (none of
our recoveries end in early program exit). The last 3 groups
of bars in Figure 2 report the average breakdowns for the
multimedia, AI, and SPEC benchmarks, respectively.

Looking at Figure 2, we see some recoveries lead to cor-
rect program outputs even under architecture-level correct-
ness (i.e., the “Architecture” components). The 3 groups
of average bars in Figure 2 show architecture-level correct-
ness is achieved in 3.8% to 17.7% of recoveries on average
for the multimedia and AI benchmarks, and in 22.5% to
31.0% of recoveries on average for the SPEC benchmarks.
In these cases, there are no corruptions to uncheckpointed
state between the rollback checkpoint and the crash; hence,
lightweight recovery can enable program completion with
numerically perfect outputs.

However, Figure 2 also shows that under application-
level correctness, a significant number of additional
crashes can be recovered (i.e., the “Application-High” and
“Application-Good” components), especially for soft com-
putations. The first 2 groups of average bars in Figure 2
show application-level correctness permits an additional
34.8% to 73.8% of recoveries on average to be correct for
the multimedia and AI benchmarks. Averaged across all
hardware structures, an additional 52.6% of recoveries are
correct under application-level correctness for the soft com-
putations. G.721-D, LBP, and GA respond particularly well
to lightweight recovery, with as many as 90% of crash re-
coveries achieving application-level correctness. In com-
bination with numerically correct recoveries, these addi-
tional application-level correct recoveries allow 66.3% of
all crashes on average to complete with acceptable results
for soft computations. Furthermore, when combined with
the results from Figure 1, our lightweight recovery mecha-
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Figure 2. Program outcomes breakdown for lightweight recov ery of crashes. The data is presented in a similar
fashion to Figure 1.

nism allows 92.4% of all architecturally visible fault injec-
tions for soft computations to complete with correct outputs
at either the architecture or application level.

Compared to soft computations, a much smaller number
of crashes are recoverable for the SPEC benchmarks. The
last group of average bars in Figure 2 show application-level
correctness provides only 2.5% more correct outputs on top
of the numerically correct recoveries. Nonetheless, when
combined with the numerically perfect outputs, lightweight
recovery still permits 28.7% of all crashes in SPEC on av-
erage to complete with acceptable results. And in combi-
nation with the results from Figure 1, lightweight recovery
allows 71.2% of all architecturally visible fault injections
for SPEC to complete with correct outputs at either the ar-
chitecture or application level.

While lightweight recovery addresses a significant num-
ber of crashes, Figure 2 also shows a drawback. As already
mentioned in Section 5.1, lightweight recovery cannot re-
cover all crashes since it does not checkpoint all state nec-
essary for program restart. The last 3 groups of average
bars in Figure 2 show our technique fails to recover 45.1%,
22.2%, and 71.3% of crashes for the multimedia, AI, and
SPEC benchmarks, respectively. Many of these failed re-
coveries lead to crashes; in these cases, we’re no worse
off than we were without lightweight recovery. However,
some failed recoveries complete and produce incorrect pro-
gram outputs. The last 3 groups of average bars in Figure 2
show our technique leads to incorrect outcomes in 12.4%,
11.0%, and 29.6% of recoveries for the multimedia, AI,
and SPEC benchmarks, respectively. Unfortunately, incor-
rect outcomes are potentially more problematic than crashes
since they are harder to detect. For the “Incorrect” cases in
Figure 2, lightweight recovery is arguably worse than no

recovery at all.
Although our recovery mechanism leads to some incor-

rect outputs, the incorrect cases are not that bad. We found
for soft computations (i.e., multimedia and AI), a signifi-
cant number of the incorrect outcomes–between 80% and
90%–still exhibit good solution quality, and fall short of
application-level correctness by only a small amount. In
addition, for vpr, almost all the “Incorrect” cases are in-
valid solutions that are caught by the consistency check (as
described in Section 2.2). Hence, they do not go unde-
tected. Nevertheless, the successful recoveries providedby
lightweight recovery come at the expense of a modest in-
crease in the number of incorrect outcomes.

6 Related Work

Our work is related to the significant body of prior re-
search on characterizing soft error susceptibility. Several
researchers have injected faults into detailed CPU models to
investigate soft error effects. Saggeseet al [28] inject faults
into a DLX-like embedded processor; Wang et al. [34] in-
ject faults into a CPU similar to the Alpha 21264 or AMD
Athlon; and Kim and Somani [14] inject faults into Sun’s
picoJava-II. All of these fault susceptibility studies usegate-
or RTL-level models, and inject faults into the entire CPU.
In contrast, our study uses a high-level architecture model,
and focuses fault injections on the register file, fetch queue,
and IQ only. Additionally, some researchers have demon-
strated many faults aremaskedand never become visible to
software. Shivakumaret al [23] study masking at thecir-
cuit level; Kim et al [13] study logical masking; Mukherjee
et al [18] identify microarchitecture-levelandarchitecture-
level masking; and Wanget al [33] study Y-branches, an-
other source of architecture-level masking.



The main difference between our work and all previous
studies on soft error susceptibility is the definition of cor-
rectness used to judge soft error impact. Previous work re-
quires architectural state to be numerically correct for pro-
gram execution to be correct. In contrast, our work only
requires program outputs to be acceptable to the user. By
evaluating correctness at a higher level of abstraction, we
measure the additional soft errors that can lead to accept-
able program outputs.

In addition to studying soft error susceptibility, several
researchers have also exploited application-level error re-
silience. Like us, Thakeret al [31] observe many approxi-
mate algorithms can tolerate soft errors with only minimal
solution quality degradation. They also show control com-
putations are more vulnerable to faults than data compu-
tations, and develop tools to automatically distinguish the
two. In comparison, we provide a more complete charac-
terization of application-level error resilience throughde-
tailed architectural simulation. Also, while Thakeret al ex-
ploit error resilience to reduce redundant protection in the
context of fault detection, we exploit the same to reduce
checkpointing in the context of fault recovery. Breuer [3, 4]
also recognizes multimedia workloads can tolerate errors,
and proposes exploiting this to address manufacturing de-
fects. Application-level correctness is similar to Breuer’s
notion of “error tolerance” (ET) [4]. The main difference is
Breuer exploits ET to tolerate hardware defects for higher
chip yield, whereas we exploit application-level correctness
to tolerate soft errors on functionally correct hardware.

Moreover, researchers have also exploited application-
level error resilience to address security attacks and soft-
ware bugs. Failure-oblivious computing [27] relies on
bounds-checking code to catch memory errors due to se-
curity attacks before they can corrupt program state. Rather
than throw an exception, execution is allowed to proceed
past errors in the hope that the program can continue cor-
rectly. Rx [24] recovers failures due to software bugs,
and re-executes them from checkpoints in a modified en-
vironment. By removing environmental factors that exer-
cise bugs, Rx can run faulty programs to completion. Au-
tomated predicate switching [35] modifies program predi-
cates to force execution down different control paths, thus
correcting software bugs in program control flow. Simi-
lar to our work, these previous works observe programs
can achieve acceptable results in the face of errors. How-
ever, while these previous works catch and/or correct errors,
our work permits program corruptions to occur but tolerates
them.

Other application-level error resilience research includes
Liu et al [17] which observes certain image processing and
tracking algorithms are inexact, and exploits this to improve
task schedulability in real-time systems. Palem [21] ex-
ploits probabilistic algorithms to build randomized circuits

that are extremely energy efficient. Lastly, Alvarezet al [1]
exploit the resilience to precision loss exhibited by multi-
media applications to develop novel value reuse and energy
reduction techniques for floating point operations. Com-
pared to our work, none of these previous studies exploit
error resilience for reliability purposes.

7 Conclusion

This paper explores definitions of program correctness
that view correctness from the application’s standpoint
rather than the architecture’s standpoint. Underapplication-
level correctness, a program’s execution is deemed correct
as long as the result it produces is acceptable to the user.
To quantify user satisfaction, we rely on application-level
fidelity metrics to capture program solution quality as per-
ceived by the user. We conduct a detailed fault suscepti-
bility study to quantify how much more fault resilient pro-
grams are at the application level compared to the architec-
ture level. Across 6 multimedia and AI benchmarks, we
find 45.8% of fault injections that lead to architecturally
incorrect execution are correct under application-level cor-
rectness. Across 3 SPECInt CPU2000 benchmarks, we find
17.6% of architecturally incorrect faults produce acceptable
results at the application level. Based on these results, we
conclude a significant number of faults that were previously
thought to cause erroneous execution are in fact completely
acceptable to the user, especially for soft computations. In
addition to studying fault susceptibility, we also presenta
lightweight fault recovery mechanism that exploits the re-
laxed requirements of application-level correctness to re-
duce checkpoint cost. Even though our lightweight recov-
ery mechanism only copies 2 Kbytes of data per check-
point on average, it successfully recovers 66.3% of pro-
gram crashes in our multimedia and AI workloads. For
SPECInt CPU2000, our technique recovers 24.3% to 34.5%
of crashes, of which only 2.5% represent additional recov-
eries allowed by application-level correctness. This lower
recovery rate is due to the fewer soft program outputs per-
mitted by SPEC programs compared to soft computations.
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