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Abstract

Traditionally, fault tolerance researchers have required
architectural state to be numerically perfect for prograra e
ecution to be correct. However, in many programs, even if
execution is not 100% numerically correct, the program can
still appear to execute correctly from the user’s perspec-

application level compared to the architecture level. Qew r
sults show for 6 multimedia and Al benchmarks that 45.8%
of architecturally incorrect faults are correct at the appl
cation level. For 3 SPECInt CPU2000 benchmarks, 17.6%
of architecturally incorrect faults are correct at the appl
cation level. We also present a lightweight fault recovery
mechanism that exploits the relaxed requirements on nu-

tive. Hence, whether a fault is unacceptable or benign may merical integrity provided by application-level correess
depend on the level of abstraction at which correctness ISto reduce Checkpoint cost. Our ||ghtwe|ght fault recovery

evaluated, with more faults being benign at higher levels of
abstraction, i.e. at the user or application level, compmhre
to lower levels of abstraction, i.e. at the architecturedev
The extent to which programs are more fault resilient at
higher levels of abstraction is application dependent.-Pro

grams that produce inexact and/or approximate outputs can

be very resilient at the application level. We call such pro-
gramssoft computationsand we find they are common in
multimedia workloads, as well as artificial intelligencdA

mechanism successfully recovers 66.3% of program crashes
in our multimedia and Al workloads, while incurring mini-
mum runtime overhead.

1 Introduction

Technology scaling—including feature size, voltage, and
clock frequency scaling—has brought tremendous improve-
ments in performance over the past several decades. Un-

workloads. Programs that compute exact numerical outputs fortunately, these same trends will make computer systems

offer less error resilience at the application level. Howev
we findall programs studied in this paper exhibit some en-
hanced fault resilience at the application level, incluglin
those that are traditionally considered exact computagion
e.g., SPECInt CPU2000.

This paper investigates definitions of program correct-
ness that view correctness from the application’s stand-
point rather than the architecture’s standpoint. Under
application-level correctnessa program’s execution is
deemed correct as long as the result it produces is ac-
ceptable to the user. To quantify user satisfaction, we
rely on application-level fidelity metrics that capture use
perceived program solution quality. We conduct a detailed

significantly more susceptible to hardware faults in the fu-
ture, resulting in reduced system reliability. Sources of
hardware faults include soft errors [23], wearout [29], and
process variations [19]. In anticipation of the reduced re-
liability that further technology scaling will bring, com-
puter architects have recently focused on several importan
fault tolerance issues. Areas of focus include characteriz
ing fault susceptibility [18], and developing low-cost Fau
detection [2, 9, 25, 26] and recovery [32] techniques.
Fundamental to all such reliability research is the defini-
tion of correct program execution. In the past, researchers
have made very strict assumptions about program correct-
ness. Traditionally, a program’s execution is said to be cor

fault susceptibility study that measures how much more rect only if architectural state is numerically perfect on a

fault resilient programs are when defining correctness at th
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cycle-by-cycle basis. A similar (though slightly loosen-n
tion of correctness requires a program'’s visible architexdt
state+e,, its output state—to be numerically perfect. In both
cases, correctness requires precise numerical integithig a
architecture level, a fairly strict requirement.

An interesting question is: must we require strict numer-
ical correctness for overall program execution to be cor-
rect? In many programs, even if execution is not 100%



numerically correct, the program can stlppearto exe- transient faults or soft errors. The centerpiece of our work
cute correctly from the user’s perspective. Although such is a detailed fault injection study that quantifies how much
numerically faulty executions do not pass the muster of more resilient programs are to soft errors at the applica-
architecture-level correctness, they may be completely ac tion level compared to the architecture level. Our study
ceptable at the user or application level. Hence, whetherinjects 156,205 faults into a detailed architectural sawnul
a fault is intolerable or benign may depend on linel of tor, and performs 27,067 separate runs to program comple-
abstractionat which correctness is evaluated. In general, tion. For soft computations, we find 45.8% of fault injec-
more faults are acceptable at higher levels of abstraction.tions thatlead to architecturally incorrect executionduce
i.e. at the application level, compared to lower levels of ab- acceptable results under application-level correctnEes.
straction,.e. at the architecture level. SPEC programs, a smaller portion of architecturally incor-
How much more fault resilient are programs at the ap- rect faults, 17.6%, produce acceptable results at the-appli
plication level? The answer to this question is application cation level. In addition to studying fault susceptibilitye
dependent, and primarily depends on how numerically ex-also present a lightweight fault recovery mechanism that
act a program’s outputs need to be. For instance, program&xploits the relaxed requirements on numerical integrity
that process human sensory and perception information argrovided by application-level correctness to reduce check
highly fault resilient at the application level. Animpomta  point cost. Our technique checkpoints some minimum state
example is multimedia workloads. Another example is arti- needed to recover after a crash, but omits from checkpoints
ficial intelligence workloadsq.g, reasoning, inference, and those data values for which the user can tolerate numeri-
machine learning), which have become increasingly impor- cal imprecision. Although our lightweight fault recovery
tant recently [8]. These programs belong to a class of com-mechanism is not fail-safe, it successfully recovers 66.3%
putations which we calsoft computation§20, 10]} Soft of program crashes in our multimedia and Al workloads,
computations compute on approximate data values associwhile incurring extremely low runtime overhead.
ated with qualitative results, making them highly fault re- The remainder of this paper is organized as follows. Sec-
silient because errors in numerical results seldom changdion 2 discusses our definitions of application-level cotre
theuser's interpretatiorof those numerical results. In con- ness. Then, Section 3 presents our experimental method-
trast, programs whose correctness are tied directly tothe n ology and Section 4 reports our fault susceptibility study.
merical values they compute may offer little error resiien  Next, Section 5 describes our lightweight recovery mech-
at the application level. Certain lossless data comprassio anism. Finally, Section 6 presents related work, and Sec-
algorithms are examples of such programs. While the de-tion 7 concludes the paper.
gree of error resilience at the application level varie®ssr

applications, we findll programs studied in this paper ex- 2 Application-L evel Correctness

hibit some enhanced fault resilience at the applicatioeljev This section presents our application-level correctness
including those that are traditionally considered as exactdefinitions. We begin by discussing soft program out-
computationse.g, SPECInt CPU2000. puts, an important property for application-level cornests

This paper explores definitions of program correctness(Section 2.1). Then, we present fidelity metrics that quan-
that view correctness from the application’s standpoint tify application-level correctness for the benchmarksistu
rather than the architecture’s standpoint. Urajgplication- ied in this paper (Section 2.2). Finally, we discuss limita-
level correctnessa program’s execution is deemed correct tions of our approach (Section 2.3).
as long as the result it produces is acceptable to the userp 1 ggft Program Outputs
In other words, correctness depends on tiser’s inter-
pretationof a program’s numerical result, not the numer-
ical result itself. To quantify user satisfaction, we rely o
application-level fidelity metrics that capture progrartuso
tion quality as perceived by the user. Because the notion o
solution quality is different across applications, our liige
metrics are application specific, though applications from
the same domain may share common fidelity metrics.

Our goal is to understand how application-level correct-
ness impacts a system’s susceptibility to faults, esggcial

Programs can exhibit enhanced error resilience at the ap-
plication level compared to the architecture level for many
reasons. However, the likelihood of this happening in-

fcreases when a program permitsiltiple valid outputsIn
this paper, we say such programs have “soft outputs.” Soft
outputs commonly occur in programs computing results
that are interpreted qualitatively by the user. Differeat n
merical results can lead to the same or similar qualitative
interpretation. Hence, multiple numerical outputs may be
acceptable to the user. Another source of soft outputs is
_ _ _ : al In- heuristic-based algorithms. Many programs solve complex
telligence algorithms. In this paper, we use the term toritsenultimedia . . : .
workloads as well because we find they exhibit similar inexamputing problems for Whmh optimal SOIUt!OnS are unaChleYable' In-
properties as the A.l. algorithms. stead of the optimal, they try to find the best solutions pos-
sible given available computational resources. In preagtic

1The term “soft computation” is normally used to describéfiaial in-



many solutions are “good enough.” So, once again, multiple
numerical outputs are acceptable to the user.

Soft outputs offer new opportunities for optimizing fault
tolerance. In particular, faults that cause a program te sim
ply generate one of its multiple valid outputs are completel
benign. It is unnecessary to protect against such fauks, al
lowing designers to reduce the cost of fault protection. For
example, in Section 5, we will study a lightweight fault re-
covery technique that omits from checkpointing the data
that only contribute to soft program outputs (since these
data are highly error tolerant), thus reduces checkpogit co

To illustrate the soft output property, Table 1 lists 9
benchmarks used in our study—three from the multime-
dia domain, three from the artificial intelligence (Al) do-
main, and three from SPECInt CPU2000. The multime-
dia workloads, G.721-D, JPEG-D, and MPEG-D are taken
from the Mediabench suite [15], and perform audio, im-
age, and video decompression, respectively. All three de-
compression algorithms are lossy. The Al workloads are
from various sources. LBP performs Pearl's Loopy Be-
lief Propagation [22], a well-known message-passing al-
gorithm for approximate inference on large Markov net-
works. Our LBP implementation solves Taskar’s Relational
Markov Network applied to a web-page classification prob-
lem [30]. SVM-L is the learning portion of a Support Vector
Machine algorithm, called SVMIlight [11]. SVM-L learns
the parameters for a support vector (SV) model on a train-
ing dataset. GA is a genetic algorithm applied to multipro-
cessor thread scheduling [12]. Given a thread dependenc
graph, GA searches for a thread schedule that minimize
execution time. Finally, the SPECInt CPU2000 workloads
are 164.gzip and 256.bzip2, two lossless data compressio
algorithms, and 175.vpr, a place-and-route program. (The
data inputs we use for vpr only perform placement-see Ta-
ble 3 in Section 3).

The second column of Table 1 reports the numerical out-
puts computed by each benchmark. As we will shalvof
these numerical outputs are soft, so multiple valid outputs
exist. In most cases, the soft outputs are due to the quali
tative nature of the program results. When appropriate, we
indicate this in the third column, labeled “Qualitative ©ut
put.” Many of our benchmarks also achieve soft outputs

because they are heuristic-based; some examples of this arg)

discussed below.
For the three multimedia programs, the numerical out-
puts are the decompressed datafiles, either in audio, imag

or video format. Once decompressed, these datafiles ca%
be played back to the user; hence, the qualitative output of

these programs is the perceived playback, either aurat or vi
sual, of the numerical outputs. Because the user’s playbac
experience is qualitative in nature, it is possible foretliént
numerical outputs to be acceptabile( valid) to the user.
Like the multimedia workloads, the Al workloads also

$

Bench | Num.Out [ Qual. Out | Fidelity Metric
Multimedia
G.721-D | Decompressed Perceived Segmental
audio datafile | audio Signal-to-Noise
Ratio (SNRseg)
JPEG-D Decompressed Perceived Peak
image datafile | image Signal-to-Noise
Ratio (PSNR)
MPEG-D | Decompressed Perceived Peak
video datafile | video Signal-to-Noise
Ratio (PSNR)
Artificial Intelligence
LBP Network Web Page | % Classification
belief values Class Types| Change
SVM-L Support Test Data % Classification
Vector Model | Class Types| Change
GA Thread - % Schedule
Schedule Length Change
SPECInt CPU2000
164.9zip | Compressed - Compression
file Ratio
256.bzip2 | Compressed - Compression
file Ratio
175.vpr Cell - Consistency
placement Check

Table 1. Numerical and qualitative outputs computed
by our benchmarks. The last column lists the fidelity
metrics used to quantify solution quality.

exhibit soft program outputs. In LBP, nodes in the Markov
network contain probability distribution functions (PDFs
over the possible class types inferred for web pages. Each

gDF encodes how strongly we “believe” a particular web

age belongs to each class type. The numerical output for
LBP, hence, is the collective belief values across the entir

arkov network. In SVM-L, the numerical output is the

VV model parameters learned from the training dataset, as
described earlier. Both LBP and SVM-L's numerical out-
puts are soft because they are used to derive classification
answers, the qualitative output for these programs. LBP se-
lects a class type for each web page by choosing the most
likely class indicated by the corresponding PDF. For SVM-
L, extracting class types is more involved because SVM-

L itself doesn’t perform classification. To obtain the class
types we want, we run a separate SVM classifier (not listed
in Table 1) that uses the SV model computed by SVM-L
perform classification on a test dataset. Computing the
assification answers in both LBP and SVM-L is an ex-
tremely inexact process. Multiple numerical outputs @feli
values for LBP and SV model parameters for SVM-L) can
ad to the same (and hence, valid) classification answer. In
A, the numerical output is the thread schedule it computes.
GA's numerical output does not have a qualitative interpre-

l}ation; however, users can still accept multiple numerical

outputs because GA is a heuristic algorithm. Although it is
infeasible to find the optimal thread schedule, in practice,
there are many thread schedules that are adequate. Any one
of these good enough answers represents a valid numerical



output from the user’s perspective. (PSNR) for JPEG-D and MPEG-D. For LBP and SVM-L,

Somewhat surprisingly, the three SPEC program outputswe use the percentage change in classification answers, and
are also soft, though we do not call the SPEC benchmarksor GA, we use the percentage change in thread schedule
soft computations. As indicated in Table 1, none of the length {.e., execution time). For the two data compression
SPEC outputs have qualitative interpretations; nonessgle algorithms, we use the compression rétibastly, vpr’s fi-
multiple numerical outputs are valid. For the data com- delity metric is a consistency check provided by the code
pression algorithms, there is flexibility in how datafiles ar itself. This consistency check first determines whether a
compressed even though the compression algorithms themgiven cell block placement is valid €., doesn’t violate any
selves are exact. We will discuss the reasons for this indesign rules), and then computes a cost metric that reflects
Section 4. The vpr benchmark tries to find a cell block the degree to which interconnect distance is minimized.
placement for a chip design. Like GA, vpr's algorithm Placements that can’t pass the consistency check are incor-
is heuristic-based since finding an optimal placement (onerect.
that minimizes interconnect distance) is intractable. déen Given the fidelity metrics in Table 1, application-level
multiple cell block placements are valid. correctness can be defined by choosing the minimum fi-

Finally, while all the benchmarks in Table 1 exhibit soft delity that is “acceptable” to the user: outputs of equal
outputs, it is important to note there are also programs foror higher quality than the minimum fidelity satisfy the
which multiple valid outputs do not exist. For example, user’s requirement and are considered correct, while out-
sorting algorithmsé€.g, quicksort) permit only one correct puts of lower quality than the minimum fidelity are con-
answer. Thus, there is little or no additional error renitie sidered incorrect. An important question, then, is how do
that can be exploited at the application level. We do not con-we determine the minimum fidelity threshold against which
sider such programs in this paper since our goal is to char-application-level correctness is measured? Unfortupatel
acterize and exploit application-level error resiliendeane minimum fidelity thresholds are extremely user-dependent.
it exists. Although studying the extent to which soft out- In practice, different users may desire different levelsmf
puts occur in programs is certainly an important direction lution quality (in fact, thesameuser may be able to live with
of research, it is beyond the scope of this work. varying levels of solution quality under different circum-

: : stances), so it is impossible to define one threshold that ap-

2.2 Solution Quality plies universally. Instead, users should be allowed tacsele

Because the benchmarks in Table 1 permit multiple valid the threshold that best fits their correctness requirements
numerical outputs, their correctness is not simply “black o As we will see in Section 4, this provides designers with
white;” hence architecture-level correctness (wheremll a the unique opportunity to tradeoff solution quality for fau
chitectural values are either correct or wrong) is cleasty t  tolerance, depending on how good a solution the user needs.
strict. An appropriate correctness definition should accom  While minimum fidelity thresholds are user-dependent,
modate all valid numerical outputs. At the same time, it nonetheless, we must choose a specific set of threshold val-
is important to recognize not all valid outputs are of equal ues for the experiments conducted later in this paper. Sec-
value; instead, there are varying degrees of solutionyuali tion 3 will discuss how we choose minimum fidelity thresh-
across our programs’ outputs. olds for our experiments.

We use appl|cat|on-s,pe0|f|c fidelity me_tncs to capture 23 Limitations
the quality of a program’s output as perceived by the user.
Our fidelity metrics quantify how different a particular eut A limitation of application-level correctness is it only
put is relative to a baseline output. (For the experimentsconsiders program outputs visible to the user. It does not
in Sections 4 and 5, we define the baseline output to beaccount for other correctness issues unrelated to visible p
the result obtained from a fault-free execution of a given gram outputs. For example, we do not consider real-time is-
benchmark). Outputs that are very similar to the baselinesues. Certain errors may not degrade solution quality appre
have high fidelity, whereas outputs that are very dissimilar ciably, but they may altewhensolutions become available.
have low fidelity. Whenever possible, we compute fidelity This is unacceptable for the correctness of real-time sys-
in terms of a benchmark’s qualitative outputs instead of its tems. In addition, we do not consider system-level issues.
numerical outputs. This enables us to capture fidelity of the Errors that do not defeat individual benchmarks may still
user’s qualitative experience, an important correctness ¢~ Propagate to other programs in a multiprogrammed environ-
sideration for many of our benchmarks. ment, causing them to crash or execute incorrectly. Lastly,

The last column in Table 1 lists the fidelity metrics May still be necessary to provide architecture-level atre
we use for our 9 benchmarks. For the multimedia work- Ness in cases where architecture state is exposed to the user

loads, we use signal-to-noise ratio (SNR). Specifically, we  2Note, due to their lossless nature, compressed outputscématot

use segmental SNR (SNRseg) for G.271-D, and peak SNRdentically reproduce the original datafile are deemed esriect, regard-
less of the compression ratio.




Processor Parameters fetch queue, and the issue queue (}@nults injected into a

gi’;ﬂvé"git;e 5 4_|Fgfféflhn'ﬁgﬁ%?i:i'%””l?g_LSQ physical register will appear in architectural state usitee
Rename reg/ROB 128-Int, 128-FP / 256 entry register is idle or belongs to a mispeculated instructiar. F
Functional unit |  8-Int Add, 4-Int Mul/Div, 4-Mem Port the fetch queue, we allow faults to corrupt instruction bits
4-FP Add, 2-FP MuliDiv including opcodes, register addresses, and immediate spec
__Branch Predictor Parameters ifiers. These faults manifest in architectural state as long
Branch predictor 8162-entry gS;';'rber}go A8-entry Bimod as the injected instruction is not mispeculated. Lastly, fo
Meta table 8192 entries the 1Q, we model 6 fields per entry: instruction opcode,
BTB/RAS 2048 4-way / 64 3 register tags (2 source and 1 destination), an immediate
Memory Parameters specifier, and a PC value. Like the fetch queue, faults in the
IL1 config 64kbyte, 64byte block, 2 way, 1 cycle lat IQ appear in architectural state for instructions that are n
Bt; ggm:g f,\j'gt;)t’:’63?)31’5&23(’42\,\/";?’2%CC);%'E 'Ett mispeculated. Corruptions to the IQ opcode and immediate
Mem config 300 cycle first chunk, 6 cycle inter chun fields behave similarly to corresponding corruptions in the
fetch queue. Corruptions to the register tags alter instmc
Table 2. Parameter settings for the detailed architec- dependences, and corruptions to the PC value affect branch
tural model into which we inject faults. target addresses.

o roaram debuaaing). In all these cases. apolication When simulating in detailed mode, two issues affect the
(e.g, prog gging). » app collection of checkpoints for subsequent functional saaul

level co.rrectness IS not strlct_enough and does not provldetion. First, not all fault injections require functionahsi-
the desired correctness requirements.

lation to program completion. Some faults are masked by
3 Experimental Methodology the microarchitectur_e, and do nolt propagate to architatctur
state. Other faults incur exceptions or lockups. (We rely
Having presented our definitions of application-level on a watchdog timer to detect lockups). In these cases, we
correctness, we now quantify how much more fault resilient simply record the outcome, and skip the functional simu-
programs are under application-level correctness cordpare |ation phase. Second, faults in the out-of-order portion of
to architecture-level correctness. This section disa®  the processor pipeliné¢., the physical register file and 1Q)
experimental methodology used in our fault susceptibility can manifest in architectural state in an imprecise manner.
study. Later, Section 4 will present the study’s results. For example, a corrupted register value may propagate to
To analyze fault susceptibility, we conduct faultinjectio  some instructions (those that haven’t issued yet) but not to
experiments [14, 25, 34] to observe the effects of faults on aothers (those that have already issued). Our detailed simu-
CPU under different definitions of correctness. Each of our |ator records these out-of-order effects. Then, when simu-
fault injection experiments injects a single bit flip inteeth  |ating the initial instructions in functional moded,, those
execution of one of our benchmark®s we assume a sin-  that were in-flight at the time of the fault), we propagate
gle event upset, or SEU, fault model. Our approach closelythe injected fault to exactly the same instructions thatewer
follows the methodology introduced by Reds. al. [25]. affected during out-of-order simulation.
We initially inject faults into a detailed architecturahsi Table 3 presents detailed fault injection information for
ulator that models a modern out-of-order superscalarrAfte each of our benchmarks described in Section 2. The col-
each fault is injected, we simulate the microarchitecture U ymn labeled “Input” specifies the input dataset used for each
til the fault completely manifests itself in architectusédte. benchmark, and the column labeled “Exec Time” reports
Then, we checkpoint the simulator’s architectural statél, a  each benchmark’s measured execution time in cycles on our
resume simulation from the checkpoint using a simple func- detailed out-of-order simulator. We inject faults onlyeaft
tional simulator. We try to run the benchmark to completion program initialization, so “Exec Time” does not include the
under the functional CPU model, and assuming the bench-henchmarks’ initialization phase. After program initizli
mark doesn’t crash, we evaluate the program’s outputs un-ion, we run each benchmark to completion in our detailed
der both architecture- and application-level correctness  simulator, performing all fault injections and checkpsint
In the detailed simulation phase, we use a modified ver-for a single hardware structure in the same run. We perform
sion of the out-of-order processor model from Simplescalar 3 such injection runs on each benchmark to inject faults into
3.0 for the PISA instruction set [5], configured with the the 3 hardware structurese(, physical register file, fetch
simulator settings listed in Table 2. Compared to the orig- queue, and 1Q). In each run, faults are randomly injected
inal, our modified simulator models rename registers and—; , A . .
. . . For both the physical register file and issue queue, our sitmunod-
issue queues separately from the Reservation Update UnlEls separate integer and floating point versions of thetsires. However,
(RUU). Using this processor model, we inject faults into when injecting faults, we distribute the faults uniformigrass both ver-
three hardware structures: the physical register file, thesions as if they formed a unified structure.




Bench Input Exec Time Interval Injects Regfile Fetch Issue
G.721-D | clinton.pcm 77643471 7000.0 | 10467 | 483(0.05)| 581 (0.06)| 1183 (0.11)
JPEG-D | lena.ppm 44520776 7000.0| 5950 | 542 (0.09)| 4341 (0.73)| 1483 (0.25)
MPEG-D | meil6v2.m2v 40457756 7000.0| 5413 | 713(0.13)| 434(0.08)| 803 (0.15)
LBP WebKB [30] 2175526139| 1000000.0| 2198 | 1317 (0.60)| 946 (0.43)| 589 (0.27)
SVM-L ala(ala) [6] 53981768 7000.0| 7225 1138 (0.16)| 2327 (0.32)| 1564 (0.22)
GA r16-0.1.in(ala) [12]] 127490411 15000.0| 8491 | 479(0.06)| 626 (0.07)| 1352 (0.16)
164.gzip | input.compressed 93396309| 15000.0| 6693 | 467 (0.07)| 829 (0.12)| 861 (0.13)
256.bzip2 | input.compressed 732651712 250000.0| 2941 | 264 (0.09)| 1559 (0.53)| 722 (0.25)
175.vpr | test 800450837| 250000.0| 3177 | 968(0.30)| 166 (0.05)| 330 (0.10)

Table 3. Fault injection statistics. “Exec Time” reports ex
between fault injections. “Injects” reports the total numb
last 3 columns report the number of functional simulation ru

ecution time in cycles. “Interval” reports the average time
er of faults injected into the physical register file. The

ns for each of the 3 hardware structures.

into a single hardware structure one after another using awe define high and good outputs to be greater than 90dB
uniformly distributed inter-fault arrival time. and between 50dB and 90dB, respectively, when compared
It is crucial to limit the total number of fault injections to outputs from fault-free execution. We aurally and visu-
since each fault potentially requires functional simaatio ally compared faulty and fault-free outputs to select these
program completion. Our methodology limits the number thresholds so that they conform qualitatively to the high
of injected faults in two ways. First, we choose program in- and good standards described above. Also, we confirmed
puts that do not result in exceedingly long execution times. quantitatively that the good threshold is equal to or better
Second, we set the inter-fault arrival time based on eachthan what is accepted by the signal processing community
benchmark’s execution time. We use larger arrival times for as constituting a “barely noticeable” difference [3, 7].rFo
longer-running benchmarks, thus reducing the number ofall other fidelity metrics, we define high and good outputs

injected faults for benchmarks with longer execution times
The column labeled “Interval” in Table 3 reports the inter-
fault arrival time used for each benchmark, while the col-
umn labeled “Injects” reports the total number of injected
faults for the physical register file. (The number of injecte
faults for the other two hardware structures is very simi-
lar since they use the same inter-fault arrival time. More
specifically, the total number of injected faults is 52,566 f
physical register file, 52,229 for fetch buffer, and 51,421
for 1Q). Across all 3 hardware structures, our fault injenti
campaign performs 156,205 fault injections.

In addition to how we inject faults, another important

to be within 1% and 5%, respectively, of the program out-
puts obtained via fault-free execution. Unfortunately, we
were unable to find any standards in the literature against
which to compare these thresholds, so we chose them to be
conservative. For our Al benchmarks, the fault-free owgtput
themselves are erroneous (the Al benchmarks only compute
approximate solutions). In all cases, the fault-free otgpu
are off by 15% or more compared to perfect solutions ob-
tained off-line. Hence, 1% and 5% represent small addi-
tional errors on top of the benchmarks’ baseline errors. For
the SPEC benchmarks, there is no quantitative justification
for our high and good thresholds; we chose 1% and 5% be-

methodology issue is what standard do we use to assessause we believe these represent small increases in file size

application-level correctness? As discussed in Sectidn 2.
application-level correctness is defined by the minimum fi-
delity threshold that is “acceptable” to the user. In our ex-
periments, we define two fidelity thresholds for this pur-
pose: “high” and “good.” The high threshold corresponds
to program outputs of extremely high quality, with no no-

ticeable solution quality degradation compared to a fault-

(for gzip and bzip) and average wire length (for vpr).

4 Fault Susceptibility

This section discusses our fault susceptibility study in
two parts. First, Section 4.1 presents the fault injecten r
sults. Then, Section 4.2 analyzes the sources of increased
error resilience at the application level.

free execution. The good threshold corresponds to program

outputs with only slightly (barely noticeable) degraded so
lution quality compared to a fault-free execution. Althbug

4.1 Fault Injection Results

Our first result is only a portion of fault injections man-

we define two separate thresholds, in our analysis, we COnifest themselves in architectural state because manysfault
sider any program output that meets the good threshold as;re masked by the microarchitecture. Microarchitecture-

being correct under application-level correctnass, (the
good threshold is our minimum fidelity threshold).

We quantify the high and good thresholds for each fi-
delity metric in Table 1 as follows. For the SNRseg and

PSNR metrics associated with our multimedia benchmarks,

level masking [18] arises due to faults that attack idle hard

ware resources, or hardware resources occupied by mispec-

ulated instructions. The last three columns in Table 3 re-
port the number of faults injected into the physical registe
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Figure 1. Program outcomes breakdown for architecturally v isible fault injections: correct at the architecture
level (“Architecture”), correct at the application level ( “Application-High” and “Application-Good”), unacceptab le
(“Incorrect”), exception or program lockup (“Crash”), and early program exit (“Terminate”).

file, fetch queue, and 1Q, respectively, that become archi-(labeled “Terminate”). The last 3 groups of bars in Figure 1
tecturally visible. In parentheses, we report the same datareport the average breakdowns for the multimedia, Al, and
as a fraction of the total injected faulise(, the column la- ~ SPEC benchmarks, respectively.
beled “Injects”). As Table 3 shows, the degree of masking Looking at Figure 1, we see a large portion of architec-
varies considerably across different benchmarks and hard+urally visible faults lead to correct program outputs un-
ware structures. But on average, only 17.3% of injected der architecture-level correctnesse( the “Architecture”
faults (27,067 out of 156,205) become architecturally-visi components). The last 3 groups of bars in Figure 1 show
ble, with the fetch queue exhibiting the most fault senjtiv. = architecture-level correctness is achieved in 50.4% tH%o0.
(22.6%) and the register file and 1Q exhibiting less sensitiv of program outputs on average across the 3 hardware struc-
ity (12.1% and 17.3%, respectively). Faults that are maskedtures for the multimedia and SPEC benchmarks, and in
by the microarchitecture produce correct program outputs61.0% to 68.8% on average for the Al benchmarks. Sim-
under both architecture- and application-level corresdne  ilar to microarchitecture-level masking, many fault injec
Next, we examine the architecturally visible faults in tions attack architectural state unnecessary for maiinigin
more detail. Figure 1 breaks down the outcome of all archi- numerical integrity in our computations, and hence, become
tecturally visible fault injections when they are simuthte architecturally masked [18]. In our benchmarks, the pri-
to program completion. For each benchmark, we report themary source of architecture-level masking is logical and in
fault injections into the physical register file, fetch gegu equality instructions. These instructions rarely chamgért
and 1Q separately in a group of 3 bars labeled “R,” “F,” outputs despite corruptions to their input operands; thus,
and “I,” respectively. Each bar contains 6 categories. Thethey are highly resilient to faults. Other (less signifigant
first category, labeled “Architecture,” indicates the mag sources of architecture-level masking include dynamjcall
outputs that pass architecture-level correctness (thetse o dead code, NOP instructions, and Y-branches [33].
puts are also correct at the application level). The nexttwo The remaining fault injections that are not masked at
categories, labeled “Application-High” and “Application  the microarchitecture or architecture levels do not pro-
Good,” indicate the additional program outputs that are ac- duce numerically correct program outputs. These fault
ceptable under application-level correctness only, assym outcomes have traditionally been consideirzbrrect un-
the “high” and “good” thresholds described in Section 3. der architecture-level correctness. Across all benchsark
The category labeled “Incorrect” indicate outcomes that and all hardware structures, 41.2% of architecturally vis-
are either invalid or unacceptable under both architeeture ible fault injections on average are architecturally incor
and application-level correctness. Finally, the last tatb ¢ rect. However, we find a significant portion of architec-
egories indicate experiments that fail to complete during turally incorrect outcomes produce high-quality soluson
functional simulation due to an exception or a program This is particularly true for the multimedia and Al bench-
lockup (labeled “Crash”) or early program exit with an error marks, our soft computations. As the first group of aver-



age bars in Figure 1 show, 55.0%, 54.8%, and 56.8% ofcost of a given thread schedule. Unfortunately, this objec-
architecturally incorrect faults for multimedia benchkgr tive function is not a soft computation, thus reducing the
occurring in the physical register file, fetch queue, and 1Q, benefits of application-level correctness.
respectively, produce program outputs with either high or  Our study also shows the SPEC benchmarks can tolerate
good fidelity {.e., the “Application-High” or “Application- faults. As mentioned in Section 2.1, gzip and bzip2's pro-
Good” components). As the second group of average barggram outputs are soft due to flexibility in how datafiles can
show, 40.4%, 33.8%, and 34.0% of architecturally incorrect be compressed. We found certain faults cause these com-
faults for Al benchmarks occurring in the same three hard- pression algorithms to emit different output tokens com-
ware structures, respectively, produce high or good fidelit pared to a fault-free execution. While these output tokens
program outputs as well. While these program outputs aredo not achieve as high a compression ratio, they still cor-
incorrect numerically, they are completely acceptablenfro  rectly encode their corresponding input tokens. Hence,
the user’s standpoinite., they are correct at the application a numerically different (slightly larger) compressed fie i
level. Overall, 45.8% of architecturally incorrect fauiits created, but the exact original file can still be recovered vi
our soft computations achieve application-level correstn ~ decompression. In vpr, as already discussed in Section 2.1,
In addition to soft computations, we find the SPEC the source of soft program outputs is multiple valid cell
benchmarks also exhibit enhanced fault resilience at the ap block placements. Some of our fault injections cause vpr
plication level. As the last group of bars in Figure 1 shows, to produce these different cell block placements, and are
26.2%, 15.5%, and 11.1% of architecturally incorrect fault thus acceptable.
for the SPEC benchmarks occurring in the physical register
file, fetch queue, and IQ, respectively, produce program out 2 Fault Recovery

puts with either high or good fidelity. These gains are much  gection 4 demonstrates many architecturally incorrect
more modest than those for our multimedia and Al bench- 4 jts are acceptable when evaluated at the applicatieh lev
marks. However, we believe the fact that application-level \yq\yever, even after considering application-level carec
correctness provides any additional fault resilience iEGP ness, a large number of faults still lead to incorrect progra
is a positive result given these benchmarks are traditipnal ,,icomesie. the “Incorrect” “Crash” and “Terminate”
considered as exact computations. components in Figure 1. Of these, by far the most signif-
4.2 Error Resilience Analysis icant is the “Crash” component. Across all experiments,
o ) . o .. crashes account for 80.8% of faults on average that are in-
The majority of faults leading to the "Application-High” ., rect at hoth the architecture and application levels.

and "Application-Good” categories in Figure 1 occur on  aqqressing crashes requires detecting the corresponding
computations related to soft outputs. As discussed in Sec'faults, and recovering from them. Since crashes consist

tiqn 2.1, sugh c_om!outations are error resilient since they ¢ exceptions and program lockups, detection is straight-
still have a high likelihood of generating acceptable answe  ¢5nvard: exceptions are intercepted by the operating sys-

in the face.of faults. For example_, JEEG—D fand MPEG- {an while lockups can be flagged by a CPU watchdog
D perform inverse DCT and quantization, while G.721-D imer  No significant hardware support nor runtime over-
performs adaptive prediction and quantization. Even in the hea4 need be incurred for detection. Recovery, on the other
absence of faults, these computations incur small err@s du ;544 can be more costly. Normally, recovery is performed
to rounding and their lossy nature. To such computations, iy checkpoints. However, checkpoints incur runtime over-

faults act like additional errors, and are often tolerable. Lo54 for copying, either at pre-determined checkpointloca
Compared to the multimedia workloads, our Al programs tions, or upon first writese.g, copy-on-write schemes).
do not perform lossy operations. Nevertheless, their com-

putations are still highly resilient to faults. As discusse 9.1 Lightweight Recovery Mechanism

Section 2.1 for LBP and SVM-L, very little precisioninthe - ynger application-level correctness, we do not need to
output datai(e., belief values or SV model parameters) is  checkpoint the whole program state. Instead, only data that
needed to derive the correct qualitative answees, €las- s necessary to restart program execution after a crastsneed
sifications). Therefore, a large number of faults on belief ;5 pe saved. Program state that only contribute to soft out-
and SV parameter computations can be tolerated as long a8uts do not need to be saved, thus reducing both check-
they do not affect the most significant bits of the data. Al- point size and runtime overhead. The key question, how-

though many soft computations are highly error resilient, ever, is how do we identify the state that requires check-
one notable exception is GA. As discussed in Section 2.1,
“We assume all terminating exceptions are due to soft errersgro-

GA exhibits soft outputs due to its heuristic nature. How- i

. . grams are assumed to be bug free), so we initiate recovesgflfof them.
ever, upon closer_examlnapon_, we found GA spends most, aqdition, we assume the OS will not trigger recovery fonfatal ex-
of its time evaluating an objective function that reflects th ceptions, but instead will process them normally.




pointing to satisfy application-level correctness? Wenexa Bench | #Check| Interval Size
ined several program crashes, and found in most cases pro- | G.721-D 261 | 1003622 566 (0.01804)
gram restart can occur simply with a valid program counter JPEG-D 59 503137 | 3360 (0.00397)
(PC) plus the correct stack state at the associated program MPEG-D 60 | 2934834 664 (0.00092)
control point. Hence, we developed a lightweight recov- LBP 50 | 47197236 700 (0.00012)
L T . . SVM-L 430 404591 | 1944 (0.00195)
ery mecha_msm Fhat periodically checkpoints the PC, archi- GA 300 | 1108510| 1282 (0.00003)
tected register file, and program stack. Up_on a c_rash, we 164.9zip 252 964376 | 1108 (0.00036)
restart the program at the nearest checkpoint, rolling back 256.bzip2 1529 | 2019708| 3462 (0.00036)
its PC, register file, and stack only—we do not touch the pro- 175.vpr 2995 505182 | 3720 (0.01869)

gram text, static data, or heap during rollback. To deteemin

when checkpoints are taken, we identify the main control- Table 4. Checkpoint statistics. The last 3 columns re-

ling loops in our benchmarks (usually the outer loops asso- port total checkpoints taken, average interval size (in

ciated with major program phases), and instrument check- instructions), and average checkpoint size (in bytes).

pointing at the top of each loop iteration. In this paper,

we instrument checkpointing manually, though it should be rectness, just as we did in Section 4. Figure 2 breaks down

possible to insert the checkpointing code automatically us the outcome of our recovery experiments. For each bench-

ing compiler techniques [16]. mark, we report the recovery outcome for crashes from the
Notice, our lightweight recovery mechanism cannot suc- Physical register file, fetch queue, and 1Q fault injections

cessfully recover all crashes because it does not guarantegeparately in a group of 3 bars labeled “R,” “F,” and “1,”

all the state necessary for program restart is checkpointedrespectively. Each bar is broken down into the same cate-

A fail-safe version of our technique would need to precisely gories as Figure 1 minus the “Terminate” category (none of

identify the state associated with soft program outputd, an Our recoveries end in early program exit). The last 3 groups

only omit these data from checkpoints. Nonetheless, as theof bars in Figure 2 report the average breakdowns for the

next section will show, our lightweight recovery mechanism multimedia, Al, and SPEC benchmarks, respectively.
can still recover a significant number of crashes. Looking at Figure 2, we see some recoveries lead to cor-

rect program outputs even under architecture-level ctrrec

5.2 Recovery Results ness i.e. the “Architecture” components). The 3 groups

We evaluate our lightweight recovery mechanism us- of average bars in Figure 2 show architecture-level correct
ing the functional simulator from our two-phase simulation ness is achieved in 3.8% to 17.7% of recoveries on average
methodology (see Section 3). First, we run checkpoint- for the multimedia and Al benchmarks, and in 22.5% to
instrumented versions of our benchmarks on the functional31.0% of recoveries on average for the SPEC benchmarks.
simulator once to acquire all the checkpoints. Table 4 re- In these cases, there are no corruptions to uncheckpointed
ports statistics from these checkpoint runs. The columnsstate between the rollback checkpoint and the crash; hence,
labeled “# Check,” “Interval,” and “Size” report the total lightweight recovery can enable program completion with
number of checkpoints, the average number of instructionshumerically perfect outputs.
between checkpoints (excluding instrumentation code), an ~ However, Figure 2 also shows that under application-
the average checkpoint size, respectively. In parenthesislevel correctness, a significant number of additional
we also report the average checkpoint size as a fraction ofcrashes can be recoveree( the “Application-High” and
the total program size. Because we only checkpoint the ‘Application-Good” components), especially for soft com-
PC, register file, and stack, our checkpoints are extremelyputations. The first 2 groups of average bars in Figure 2
lightweight. On average, our checkpoints are roughly 2 show application-level correctness permits an additional
Kbytes in size, with consecutive checkpoints separated by34.8% to 73.8% of recoveries on average to be correct for
400,000 instructions or more. Since we acquire our check-the multimedia and Al benchmarks. Averaged across all
points on the functional simulator, we have not measuredhardware structures, an additional 52.6% of recoveries are

the actual runtime cost of our checkpoints; however, we es-correct under application-level correctness for the smit ¢
timate a 1% runtime overhead at worst. putations. G.721-D, LBP, and GA respond particularly well
After acquiring all the checkpoints, we perform recovery to lightweight recovery, with as many as 90% of crash re-
experiments. For every crash outcome in Figure 1, we roll- coveries achieving application-level correctness. Incom
back to the nearest checkpoint, as described in Section 5.1pination with numerically correct recoveries, these addi-
and restart execution in our functional simulator. Then, we tional application-level correct recoveries allow 66.3% o
try to run the benchmark to completion, and assuming theall crashes on average to complete with acceptable results
benchmark doesn't crash again, we evaluate the program’§0r soft computations. Furthermore, when combined with
outputs under both architecture- and application-level co the results from Figure 1, our lightweight recovery mecha-
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Figure 2. Program outcomes breakdown for lightweight recov ery of crashes. The data is presented in a similar
fashion to Figure 1.

nism allows 92.4% of all architecturally visible fault icje recovery at all.

tions for soft computations to complete with correct ougput Although our recovery mechanism leads to some incor-

at either the architecture or application level. rect outputs, the incorrect cases are not that bad. We found
Compared to soft computations, a much smaller numberfor soft computationsif., multimedia and Al), a signifi-

of crashes are recoverable for the SPEC benchmarks. Theant number of the incorrect outcomes—between 80% and

last group of average bars in Figure 2 show applicationteve 90%-still exhibit good solution quality, and fall short of

correctness provides only 2.5% more correct outputs on topapplication-level correctness by only a small amount. In

of the numerically correct recoveries. Nonetheless, whenaddition, for vpr, almost all the “Incorrect” cases are in-

combined with the numerically perfect outputs, lightweigh valid solutions that are caught by the consistency check (as

recovery still permits 28.7% of all crashes in SPEC on av- described in Section 2.2). Hence, they do not go unde-

erage to complete with acceptable results. And in combi-tected. Nevertheless, the successful recoveries prowiged

nation with the results from Figure 1, lightweight recovery lightweight recovery come at the expense of a modest in-

allows 71.2% of all architecturally visible fault injectie crease in the number of incorrect outcomes.

for SPEC to complete with correct outputs at either the ar-

chitecture or application level. 6 Related Work

While Iightweight recovery addresses a significant num-  5r work is related to the significant body of prior re-
ber of crashes, Figure 2 also shows a drawback. As alread¥search on characterizing soft error susceptibility. Saver
mentioned in Section 5.1, lightweight recovery cannot re- yesearchers have injected faults into detailed CPU models t
cover all crashes since it does not checkpoint all state NeCynvestigate soft error effects. Saggesal [28] inject faults
essary for program restart. The last 3 groups of averagenio g DLX-like embedded processor; Wang et al. [34] in-
bars in Figure 2 show our technique fails to recover 45.1%,ject faults into a CPU similar to the Alpha 21264 or AMD
22.2%, and 71.3% of crashes for the multimedia, Al, and aAtnjon: and Kim and Somani [14] inject faults into Sun’s
SPEC benchmarks, resp(.ac_tlvely. Many of theée failed re-picogava-I1. All of these fault susceptibility studies gse-
coveries lead to crashes; in these cases, weTe no Worse RT| -level models, and inject faults into the entire CPU.
off than we were without lightweight recovery. However, | contrast, our study uses a high-level architecture model
some failed recoveries complete and produce incorrect pro-yng focuses fault injections on the register file, fetch gyeu
gram outputs. The last 3 groups of average bars in Figure 2,54 1 only. Additionally, some researchers have demon-
show our technique leads to incorrect outcomes in 12.4%,¢trated many faults araskedand never become visible to
11.0%, and 29.6% of recoveries for the multimedia, Al, guftware. Shivakumaet al [23] study masking at their-
and SPEC benchmarks,_respecnvely. Unfortgnately, incor-cyjit level Kim et al[13] study logical masking; Mukherjee
rectoutcomes are potentially more problematic than ceashe g (18] identify microarchitecture-leveandarchitecture-
since they are harder to detect. For the “Incorrect” cases injg,g| maskingand Wanget al [33] study Y-branches, an-
Figure 2, lightweight recovery is arguably worse than no giher source of architecture-level masking.



The main difference between our work and all previous that are extremely energy efficient. Lastly, Alvaetal [1]
studies on soft error susceptibility is the definition of-cor exploit the resilience to precision loss exhibited by multi
rectness used to judge soft error impact. Previous work re-media applications to develop novel value reuse and energy
quires architectural state to be numerically correct farpr reduction techniques for floating point operations. Com-
gram execution to be correct. In contrast, our work only pared to our work, none of these previous studies exploit
requires program outputs to be acceptable to the user. Byerror resilience for reliability purposes.
evaluating correctness at a higher level of abstraction, we .
measure the additional soft errors that can lead to accept-7 Conclusion
able program outputs. This paper explores definitions of program correctness

In addition to studying soft error susceptibility, several that view correctness from the application’s standpoint
researchers have also exploited application-level egor r rather than the architecture’s standpoint. Urajgslication-
silience. Like us, Thakeet al [31] observe many approxi- level correctnessa program’s execution is deemed correct
mate algorithms can tolerate soft errors with only minimal as long as the result it produces is acceptable to the user.
solution quality degradation. They also show control com- To quantify user satisfaction, we rely on application-leve
putations are more vulnerable to faults than data compu-fidelity metrics to capture program solution quality as per-
tations, and develop tools to automatically distinguish th ceived by the user. We conduct a detailed fault suscepti-
two. In comparison, we provide a more complete charac- bility study to quantify how much more fault resilient pro-
terization of application-level error resilience throudé- grams are at the application level compared to the architec-
tailed architectural simulation. Also, while Thaketral ex- ture level. Across 6 multimedia and Al benchmarks, we
ploit error resilience to reduce redundant protection & th find 45.8% of fault injections that lead to architecturally
context of fault detection, we exploit the same to reduce incorrect execution are correct under application-lewel ¢
checkpointing in the context of fault recovery. Breuer [B, 4 rectness. Across 3 SPECInt CPU2000 benchmarks, we find
also recognizes multimedia workloads can tolerate errors,17.6% of architecturally incorrect faults produce accblgta
and proposes exploiting this to address manufacturing de-results at the application level. Based on these results, we
fects. Application-level correctness is similar to Breésier conclude a significant number of faults that were previously
notion of “error tolerance” (ET) [4]. The main difference is thought to cause erroneous execution are in fact completely
Breuer exploits ET to tolerate hardware defects for higher acceptable to the user, especially for soft computatioms. |
chip yield, whereas we exploit application-level correst®  addition to studying fault susceptibility, we also presant
to tolerate soft errors on functionally correct hardware. lightweight fault recovery mechanism that exploits the re-

Moreover, researchers have also exploited application-laxed requirements of application-level correctness to re
level error resilience to address security attacks and soft duce checkpoint cost. Even though our lightweight recov-
ware bugs. Failure-oblivious computing [27] relies on ery mechanism only copies 2 Kbytes of data per check-
bounds-checking code to catch memory errors due to sepoint on average, it successfully recovers 66.3% of pro-
curity attacks before they can corrupt program state. Rathe gram crashes in our multimedia and Al workloads. For
than throw an exception, execution is allowed to proceed SPECInt CPU2000, our technique recovers 24.3% to 34.5%
past errors in the hope that the program can continue cor-of crashes, of which only 2.5% represent additional recov-
rectly. Rx [24] recovers failures due to software bugs, eries allowed by application-level correctness. This lowe
and re-executes them from checkpoints in a modified en-recovery rate is due to the fewer soft program outputs per-
vironment. By removing environmental factors that exer- mitted by SPEC programs compared to soft computations.
cise bugs, Rx can run faulty programs to completion. Au-
tomated predicate switching [35] modifies program predi- 8 Acknowledgements
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