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Abstract

Traditionally, fault tolerance researchers have
made very strict assumptions about program correct-
ness. Such strict notions of correctness are appro-
priate for workloads that are numerically oriented.
However, a growing number of important workloads
produce results that have a higher (often qualitative)
user-level interpretation. We call these soft compu-
tations. Examples of soft computations include mul-
timedia processing, as well as cognitive information
processing [1]. While data corruptions can change
the numerical result of soft computations, they of-
ten do not change the user’s interpretation of those
numerical results. Hence, faults that would other-
wise be deemed unacceptable from a strict numerical
standpoint may in fact be tolerable (or even imper-
ceptible) from the user’s standpoint. Systems that
can identify and exploit such error resiliency at the
user level offer new opportunities for fault tolerance
optimization.

This paper makes several contributions in the
context of fault tolerance for soft computations.
First, we identify three characteristics of soft com-
putations that make them resilient to error: re-
dundancy, adaptivity, and reduced precision. Sec-
ond, we quantify the extent to which soft computa-
tions are fault tolerant by conducting fault-injection
experiments. Our results show that using relaxed
notions of program correctness, 82% of injected
faults are tolerable. Furthermore, when employing
a lightweight recovery scheme enabled by soft com-
putations, we find 96% of all injected faults are ac-
ceptably tolerated in our soft computing benchmarks.
Finally, we present a method for identifying soft
computations at the instruction level using dynamic
slicing analysis. We find that in the benchmarks we
study, 62% of all dynamic instructions participate
in soft computations, and can tolerate single-bit er-
rors up to a fault rate of 8 × 10−6.

Keywords: Fault Tolerance; Soft Computing;
Program Correctness; Fault Injection; Recovery.

1 Introduction

CMOS technology scaling along with voltage and
clock frequency scaling have brought tremendous
improvements in microprocessor performance. Un-
fortunately, these trends also make circuits more
susceptible to transient faults due to high energy
particle strikes (i.e., soft errors), resulting in de-
graded system reliability [2]. Hence, there has been
significant interest recently in developing techniques
for improving reliability [3, 4, 5, 6, 7].

Fundamental to any reliability research is the
definition of what constitutes correct program ex-
ecution. In the past, fault tolerance researchers
have made very strict assumptions about correct-
ness. Typically, a program is said to execute cor-
rectly only when the produced architectural state is
correct on a cycle-by-cycle basis. A looser (though
still fairly strict) notion of program correctness com-
monly adopted by reliability researchers is that the
visible memory state after program completion is
correct in its entirety.

Such strict notions of program correctness are
appropriate for traditional workloads that are nu-
merically oriented. However, a growing number of
important workloads produce results that have a
higher (often qualitative) user-level interpretation.
We refer to such computations as soft computa-
tions. An example of soft computation is processing
of human sensory information common in multime-
dia workloads. Another example is cognitive infor-
mation processing, an emerging application domain
that applies artificial intelligence algorithms for rea-
soning, inference, and learning to commercial work-
loads [1].

While data corruptions can change the numeri-
cal result of soft computations, they often do not



change the user’s interpretation of those numerical
results. Consequently, faults that would otherwise
be deemed unacceptable from a numerical stand-
point may in fact be tolerable (or even impercepti-
ble) from the user’s standpoint. Systems that can
identify and exploit such error resiliency at the user
level offer new opportunities for fault tolerance op-
timization.

In the past, researchers have observed soft com-
puting characteristics and proposed to exploit them
for reduced energy consumption [8, 9, 10] as well
as for fault tolerance in ASIC design [11, 12]. In
this paper, we study the potential for soft computa-
tions to increase fault tolerance in general-purpose
CPUs. First, we identify three important character-
istics of soft computations that make them resilient
to error: redundancy, adaptivity, and reduced preci-
sion. Second, we quantify the extent to which soft
computations are fault tolerant on general-purpose
CPUs by conducting fault injection experiments.
Our results show that 44% of the faults injected
into our benchmarks are completely masked and
do not alter the numerical results of the compu-
tations. However, an additional 38% of all injected
faults are either imperceptible or tolerable from the
user’s standpoint. Third, we develop a lightweight
recovery technique that tries to checkpoint and re-
cover only “hard state” (i.e., any state not involved
in soft computations). Despite only recovering a
small fraction of the program state (less than 1% of
the entire program state in most benchmarks), our
recovery technique can successfully recover 79% of
fault injections leading to program crashes. With
our lightweight recovery technique, our soft compu-
tations can successfully tolerate 96% of all injected
faults. Finally, we present a method for identifying
soft computations at the instruction level using dy-
namic slicing analysis. We find that in the bench-
marks we study, 62% of all dynamic instructions
participate in soft computations, and can tolerate
single-bit errors up to a fault rate of 8 × 10−6.

The remainder of this paper is organized as fol-
lows. Section 2 discusses characteristics of soft com-
putations that make them particularly resilient to
error. Then, Section 3 reports on our fault injec-
tion experiments, and presents our lightweight fault
recovery technique. Next, Section 4 introduces our
methodology for identifying soft computations at
the instruction level. Finally, Section 5 presents re-
lated work, and Section 6 concludes the paper.

2 Soft Computations

This section discusses why soft computations are
inherently resilient to faults (Section 2.1), and then
presents a detailed illustrative example, loopy belief
propagation (Section 2.2).

2.1 Sources of Fault Resiliency

Soft computations, in comparison to traditional
numerically-oriented computations, exhibit an in-
creased resilience to faults for two major reasons.
First, soft computations permit a less strict defini-
tion of program correctness due to the qualitative
nature of their results. Consider the following five
definitions of program correctness, listed below in
increasing strictness.

I. Architectural state is numerically correct on a
per-cycle (or per multiple-cycle) basis.

II. Output state (i.e., computation results visible
at program completion or during system calls)
is numerically correct.

III. Output state is numerically correct within some
tolerance.

IV. Output state is qualitatively correct based on
higher-level interpretation.

V. Output state is qualitatively correct based on
higher-level interpretation within some toler-
ance.

Definitions I and II employ precise numerical
measures of program state, and are commonly used
to evaluate program correctness in existing fault tol-
erance research. The remaining definitions are less
strict, and are appropriate for soft computations.
Like the first two, definition III is numerical, but
allows for some error. (The error may be tolera-
ble because the results are computed at a greater
precision than necessary). Definition IV applies to
programs producing numerical results that have a
higher-level interpretation. For example, an audio
application may produce a signal consisting of a
stream of numbers that is heard by an end-user. Or,
an inference algorithm may compute a probability
distribution function from which the program draws
a conclusion. Finally, definition V also assumes a
higher-level interpretation of numerical results (like
IV), but allows for some error in the interpretation
itself.

Soft computations exhibit increased error re-
silience because their results are not directly tied
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to precise numerical values. The results are qual-
itative (definitions IV and V) or imprecise (defini-
tions III and V). Hence, errors in numerical compu-
tations may be tolerable, affording new opportuni-
ties for fault tolerance. Moreover, under definitions
III and V, correctness ceases to be black or white;
instead, we can speak of a “degree of correctness”
determined by the amount of tolerable error. This
opens the possibility to trade off answer quality for
error resiliency.

One caveat is our correctness definitions consider
output integrity only, disregarding other important
factors. For example, we do not consider real-time
constraints. While errors may not degrade solu-
tion quality, they might alter when solutions be-
come available which can be unacceptable under
certain circumstances. In addition, we do not con-
sider system-level correctness. Errors that do not
defeat individual soft computations may still prop-
agate to other programs (either related or unrelated
to the soft computations), causing them to crash or
execute incorrectly. These are important correct-
ness issues that we hope to address in future work.

In addition to relaxed program correctness, soft
computations can also be error resilient due to spe-
cial algorithmic properties. We have identified the
following properties in several soft computations:

I. Redundancy. Soft computations that are it-
erative or that exhibit reduced precision (see
below) often contain some degree of redun-
dancy. Unlike dead code, these redundant com-
putations contribute to the application result,
but may not improve answer quality apprecia-
bly. Programs with redundant computations
are more error resilient because the redundancy
can mask faults.

II. Adaptivity. Many soft computing algorithms
are already designed with error in mind. This
is particularly common in algorithms that com-
pute on noisy or probabilistic data. Such soft
computations include code to detect certain
forms of error, and adapt the computation ac-
cordingly. Due to their self-healing nature,
adaptive codes are naturally error resilient.

III. Reduced Precision. Soft computations often
have precision requirements that are lower than
the datatypes supported by the programming
environment / hardware architecture. These
soft computations are resilient to errors that
modify data values within the precision toler-
ance, as described earlier. Also, they are tol-
erant to errors whose magnitude decay as the
errors propagate through the computation.

2.2 Loopy Belief Propagation

Loopy Belief Propagation (LBP) is a leading
algorithm for approximate inference on graphical
models. It is an extension of belief propagation
(BP) [13], and is widely used in applications such as
coding theory and combinatorial optimization. Our
implementation of LBP, which we use for our exper-
iments in Sections 3 and 4, performs classification.

LBP is a graph-based iterative message pass-
ing algorithm. Graph nodes represent belief values,
while graph edges connect beliefs that are statisti-
cally related. At each iteration, neighboring graph
nodes exchange messages based on their mutual be-
lief values. Then, each node integrates all its re-
ceived messages into its local belief to compute a
new belief value. This process iterates until the en-
tire graph converges.

Many of the soft computing characteristics dis-
cussed in Section 2.1 can be found in LBP. Fore-
most, LBP exhibits a loose definition of program
correctness. For example, our LBP implementation
computes a final set of belief values; however, its
ultimate goal is to derive the class type for each
belief value in the graph. Because different belief
values can lead to the same class type, faulty ex-
ecutions of LBP can produce the same classifica-
tion answer even though the belief values themselves
are corrupted. Furthermore, because LBP performs
approximate inference, the classification answer it
computes may not be correct (compared to ground
truth) even when the algorithm executes error-free.
Hence, the user must be prepared to accept some
baseline number of miss-classifications. Any addi-
tional miss-classifications the user is willing to ac-
cept beyond this baseline could be traded off to tol-
erate errors during belief computation.

LBP also exhibits all three of the algorithmic
properties discussed in Section 2.1. LBP is redun-
dant because many of the messages passed between
graph nodes across different iterations are identi-
cal, especially when the graph nears convergence.
Our experience shows roughly 2/3 of all messages
can be dropped without affecting numerical conver-
gence. These redundant messages enhance LBP’s
ability to absorb or recover from transient faults.
LBP is also adaptive due to its iterative nature. Er-
rors that are serious enough to prevent convergence
cause the algorithm to simply execute additional
iterations; these extra iterations often correct the
errors and enable proper convergence. Lastly, LBP
exhibits reduced precision. Beliefs, implemented us-
ing high-precision floating point values, only require
a small amount of precision to numerically converge
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and yield the desired classification answer. Errors
that propagate beyond this minimum level of preci-
sion do not cause miss-classifications.

3 Fault Resilience Results

In this section, we study the fault resilience
of soft computations (Section 3.1), and then we
present and evaluate a lightweight recovery tech-
nique enabled by soft computing (Section 3.2).

3.1 Fault Injection Experiments

We first study the overall fault resilience of pro-
grams by injecting a single fault into a program’s
execution and examining the resulting program be-
havior (i.e., we assume a single event upset, or SEU,
fault model). We conduct our fault-injection exper-
iments using the in-order functional simulator from
Simplescalar 3.2b. A single fault is simulated by
picking a dynamic instruction and one of its source
operands, and then flipping one of the operand’s
bits–all chosen randomly. The program is then run
to completion, unless exceptions or program lockups
occur. Program lockups are detected via expiration
of watchdog timers that are set at the beginning of
major loops in each program. If the program com-
pletes, result accuracy is assessed. We tried hun-
dreds or thousands of such single-fault injection ex-
periments for each program, depending on the size
of the program. The number of faults injected ap-
pears beneath each benchmark in Figure 1, which
will be explained momentarily.

By injecting faults directly into instructions’
source operands, our faults have a high likelihood
of flipping the bits necessary for architecturally cor-
rect execution, or ACE bits [14]. (The only unACE
bits we flip are those associated with dynamically
dead code). This effectively exposes program-level
fault masking characteristics, the focus of our study.
However, it is well-known that many faults can also
be masked at the microarchitecture or architecture
level [14]. Since our simulations do not account for
these effects, our results tend to underestimate the
number of errors that result in numerically correct
execution when observing SEU faults on real proces-
sors. In the future, we plan to account for hardware-
level masking.

Table 1 lists the benchmarks used in our experi-
ments, consisting of two benchmarks representing
cognitive information processing–LBP and SVM-
L–and two benchmarks representing multimedia–
G.721-D and JPEG-D. LBP is our loopy belief prop-
agation algorithm described in Section 2.2. SVM-L

benchmarks Numerical results Qualitative results

LBP Belief values Node Classification

SVM-L Support Vector
(SV) Model

Input Dataset Clas-
sification using SV
Model

G.721-D Decompressed au-
dio datafile

Segmental Signal-
to-Noise Ratio
(SNRseg)

JPEG-D Decompressed
image datafile

Peak Signal-to-Noise
Ratio (PSNR)

Table 1. Benchmarks used in our experiments.
Both the numerical and qualitative results com-
puted by each benchmark are listed.

is the learning portion of a Support Vector Machine
algorithm, called SVMlight [15]. SVM-L learns the
parameters for a support vector (SV) model on a
training dataset. G.721-D and JPEG-D are audio
and image decompression algorithms, respectively,
from the Mediabench suite [16]. Both algorithms
are lossy.

Table 1 also lists the numerical and qualitative
results we evaluate to validate program correctness
after each fault-injection experiment. As described
in Section 2.2, the numerical results of LBP are the
belief values, while the qualitative results are the
class types derived from the belief values. The SV
model parameters learned by SVM-L are its numer-
ical results. SVM-L’s qualitative result is the classi-
fication answer one would get using the learned SV
model. To obtain this classification answer, we run
the classifier provided by the SVMlight distribution
using the learned SV model on an input dataset.
(Note, the classifier is used only to obtain the qual-
itative result; we don’t inject errors into the classi-
fier). Lastly, the numerical results for G.721-D and
JPEG-D are the decompressed datafiles each bench-
mark produces. The qualitative result is the signal-
to-noise ratio (SNR) relative to the datafiles pro-
duced by the original lossy, but fault-free, decom-
pression. We use the segmented SNR and peak SNR
metrics for G.721-D and JPEG-D, respectively.

Figure 1 breaks down the outcome of all fault-
injection experiments performed on each benchmark
into 5 categories: program finishes with correct nu-
merical results, program finishes with correct qual-
itative results, program finishes with “acceptable”
qualitative results, program finishes with “unac-
ceptable” qualitative results, and program crashes
or locks up. Qualitatively acceptable is defined to
be within 10% of the actual qualitative result; oth-
erwise, the outcome is qualitatively unacceptable.
Note that the first 3 outcomes represent “correct”
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Figure 1. Breakdown of fault-injection experi-
ment outcomes.

outcomes, and correspond to definitions II, IV, and
V of correct program execution, respectively, from
Section 2.1.

In Figure 1, we see 44% of all experiments on av-
erage finish with the correct numerical results. An-
other 17% on average finish with the correct qual-
itative results, and an additional 21% on average
finish with qualitatively acceptable results. These
experiments demonstrate the potential for increased
fault tolerance in soft computations. 38% of in-
jected faults (qualitatively correct + qualitatively
acceptable) are tolerable thanks to the relaxed no-
tions of program correctness afforded by our bench-
marks. In addition, a great portion of the numer-
ically correct outcomes (44% of injected faults) is
due to the redundant, adaptive, and reduced pre-
cision properties from Section 2.1 exhibited by our
benchmarks. For example, we observe that most of
the numerically correct outcomes in LBP are due
to these properties. We are currently in the process
of quantifying the impact of these properties in the
remaining benchmarks.

3.2 Lightweight Recovery

The last 2 outcome categories in Figure 1 (qual-
itatively unacceptable + crash/lock-up) represent
“incorrect” outcomes, accounting for 18% of the
fault-injection experiments. Of the two, the more
significant is crashes and lock-ups (16%). Fortu-
nately, soft computations can help simplify recovery
of these terminating faults. Traditional approaches
require checkpointing program state to enable un-
rolling corrupt data modifications that occur after
a fault but before detection. Soft computations re-
lax the need for heavyweight checkpoints since they
are resilient to data corruptions, as demonstrated

in Section 3.1. We still need to checkpoint non-
corruptible data (i.e., “hard state”), but this is usu-
ally much less than the entire program state.

We developed a lightweight fault recovery mech-
anism that exploits soft computing properties.
Specifically, we checkpoint program execution
periodically–immediately prior to certain function
calls or loops. Rather than checkpoint all program
state, we only checkpoint the processor state (pro-
gram counter and register file) and the stack; we
do not checkpoint the heap or static data. (We
find that a majority of “hard state” resides in these
memory structures, so checkpointing them is suffi-
cient in most cases. We are currently studying ways
to more precisely identify “hard state.”) For the
crash and lock-up outcomes in Figure 1, we rollback
the processor state and stack to the most recent par-
tial checkpoint and restart the computation. Notice
we do not employ any fault detection mechanisms
other than looking for crashes and lock-ups. Conse-
quently, many faults may propagate before trigger-
ing recovery. This increases the potential for data
corruption, but we rely on the soft computing prop-
erties of our benchmarks to tolerate these corrup-
tions.

The cost of our lightweight checkpoints is very
small: on average, our partial checkpoints are less
than 1% of the entire program state (i.e., including
the heap and static data). One exception is G.721-
D. G.721-D has a small memory footprint; hence,
the processor state and stack make up a significant
portion of the overall program state. Each check-
point in G.721-D saves 1/3 of the program state.

Figure 2 breaks down the outcome of all
crash/lock-up cases from Figure 1 for each bench-
mark into 4 categories: program recovers with
correct qualitative results, program recovers with
“acceptable” qualitative results, program recovers
with “unacceptable” qualitative results, and pro-
gram cannot be recovered. In Figure 2, we see 79%
of all crashes/lock-ups can be successfully recovered
on average (qualitatively correct + qualitatively ac-
ceptable) by our lightweight recovery mechanism.

Combining the successfully recovered faults in
Figure 2 with the successfully tolerated faults in
Figure 1, we see our benchmarks can execute cor-
rectly (with acceptable results) in almost 96% of
the fault-injection experiments. As discussed in this
and the previous section, the high fault resilience
comes mostly from the soft computing properties in
our benchmarks.
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Figure 2. Breakdown of lightweight recovery
outcomes for the crash/lock-up cases from Fig-
ure 1.

4 Soft Instruction Results

Section 3 demonstrates that soft computations
are highly resilient to faults. In this section, we
study the source of this fault resiliency quantita-
tively (in contrast to the qualitative discussion in
Section 2.1). First, we identify fault resilient com-
putations at the instruction level, and then we
demonstrate how fault resilient specifically identi-
fied instructions are.

4.1 Identifying Soft Instructions

Soft computations permit looser definitions of
program correctness because they compute on data
values that are interpreted qualitatively, as de-
scribed in Section 2.1. Such “soft data values”
are approximate, inexact, or probabilistic in nature.
However, not all code within a soft program deal
with soft data values. This is why, for example,
some of the fault injections in Section 3.1 lead to
crashes. Soft computations are rarely entirely soft;
instead, they consist of a mix of soft and exact com-
putations.

We analyzed program execution at the instruc-
tion level to separate the instructions that partici-
pate in soft and exact computations. Starting from
the soft data values in our computations, which
we identified by hand, we perform dynamic back-
ward slicing [17] to identify the subset or “slice” of
instructions that participate in soft computations.
Our dynamic backward slicer analyzes the following
three instruction classes:

I. Arithmetic. All arithmetic instructions that

compute on soft data are included in the slice.

II. Memory. Loads or stores of soft data are
included in the slice. Instructions computing
load addresses of soft data are also included in
the slice because corrupted soft load addresses
cannot corrupt exact state. However, instruc-
tions computing store addresses of soft data are
not included in the slice because corrupted soft
store addresses can corrupt exact state.

III. Control. Instructions computing conditional
branch outcomes are included in the slice if
the branch controls computations affecting soft
data values only. However, instructions com-
puting branch/jump target addresses are not
included in the slice to ensure execution never
deviates from the program’s control-flow graph.

In addition to the above instruction classes, our
slicer also includes dynamically dead instructions
into the slice.

We modified the Simplescalar in-order functional
simulator to perform backward slicing analysis at
runtime. Table 2 presents the results of our slicing
analysis. For each benchmark, Table 2 reports the
size of the slice containing the soft instructions as a
percentage of all dynamically executed instructions.
We find that soft instructions are significant in the
benchmarks we examine, accounting for about 62%
of the dynamic instruction stream on average.

LBP SVM-
L

G.721-
D

JPEG-
D

average

64% 52% 57% 77% 62%

Table 2. Size of slice containing soft instruc-
tions in our benchmarks.

4.2 Selective Fault Injection

Now that we have identified the soft instructions,
we next measure how fault tolerant they are. We
conduct a similar set of random fault-injection ex-
periments as Section 3.1; however, we limit our fault
injections only to soft instructions, i.e. those identi-
fied by our slicer. During fault injection, two types
of exceptions can occur: arithmetic exceptions, and
memory exceptions (because we include load ad-
dress computations in our slices). We modified
our simulator to ignore exceptions, and to return a
pre-defined constant value into any output registers
whenever exceptions occur. Lastly, instead of inject-
ing a single fault per program run as in Section 3.1,
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Figure 3. Fault resiliency of soft instructions for
our benchmarks.

we inject multiple faults at some pre-defined fault
rate.

Figure 3 plots correctness of the qualitative re-
sults from each benchmark (see Table 1) as a func-
tion of fault rate, with each point representing the
average over 10 trials. All 4 benchmarks exhibit the
same behavior. Correctness remains high despite
numerous faults being injected into the benchmarks
until some critical fault rate. The critical fault rate
is different for each benchmark, but varies from
10−7 to 8 × 10−6. Beyond the critical fault rate,
correctness degrades. Figure 3 shows the soft in-
structions from each benchmark are highly resilient
to faults. Moreover, we note that all of the exper-
iments in Figure 3 complete, thus demonstrating
that our slicer does in fact identify the soft instruc-
tions from each benchmark.

5 Related Work

This work is related to four categories of re-
search. First, previous researchers have identified
soft computations and observed their resilience to
error. Specifically, Krishna Palem’s work [8, 9] tries
to reduce energy consumption in probabilistic al-
gorithms, Carlos Alvarez’s work [10] exploited soft
computations in multimedia applications for value
reuse and energy improvement, and Melvin Breuer’s
work [11, 12] tries to tolerate manufacturing defects
and trasient faults for ASICs in multimedia algo-
rithms. Compared to Palem’s or Alvarez’s work,
we are focused on system fault tolerance rather than

energy or performance. Compared to Breuer’s work,
we are interested in general-purpose CPUs rather
than application-specific hardware. To our knowl-
edge, we are the first to quantify the extent to which
general-purpose systems are fault tolerant when ex-
ploiting soft computing characteristics.

The second related area is characterizing pro-
grams’ susceptibility to transient faults. Kim and
Somani [18] injected faults into an RTL model of
Sun’s picoJava-II. Wang et al. [19] injected faults
into an RTL model of a CPU similar to the Alpha
21264 or AMD Athlon. In both of these previous
studies, program correctness requires architectural
state to exactly match with known error-free execu-
tion. In contrast, our work explores workloads that
permit a looser definition of correctness, enabling
new opportunities for fault tolerance optimization.

The third related area is identifying sources of
fault-tolerance in programs. Previous research has
noticed that not all transient faults are visible ex-
ternally. Wang et al. [20] noticed that certain con-
ditional branch outcomes can be wrong without af-
fecting program correctness. Mukherjee et al. [14]
found that certain bit corruptions at the microar-
chitectural and architectural levels are not visible.
They found that NOP, performance-enhancing, and
dynamically dead instructions lead to the fault re-
silience they observed. Our work differs in that
we take algorithm-level effects into consideration,
such as high-level definitions of correctness and re-
dundancy, adaptivity, and reduced precision. Pre-
vious work considered only microarchitectural- or
architectural-level effects. Our approach exposes
more fault resilience by exploiting opportunities at
the algorithm level.

Finally, in exploiting fault-tolerance information,
Wang et al. [20] presented the performance speedup
obtained by removing mispredictions on outcome-
tolerant branches. Weaver et al. [21] developed tech-
niques to avoid signaling false errors which occur on
instructions unrelated to final results. Instead, we
propose that soft computations, which provide sig-
nificant fault tolerance, also enable lightweight re-
covery. Experimental results demonstrate that our
recovery technique is very effective, despite the fact
that only a small fraction of the program state is
saved at each checkpoint.

6 Conclusion

This work investigates the impact of soft com-
putations on fault tolerance. We propose that un-
derstanding the algorithms and how users interpret
program results can provide significant opportuni-

7



ties for increasing fault tolerance. With relaxed def-
initions of program correctness, programs present
much more resilience to transient faults. We quan-
tify their fault resilience by conducting fault injec-
tion experiments. Our experiments show that by
integrating the user’s interpretation into the evalu-
ation of program correctness, the number of trials
that can generate acceptable results are increased
by roughly a factor of two. We also develop a
lightweight recovery technique that tries to check-
point and recover only a minimal subset of program
state. Overall, with our lightweight recovery mech-
anism, soft computations can successfully tolerate
96% of all injected faults. Lastly, we identify soft
computations at the instruction level using dynamic
slicing analysis, and find that soft instructions ac-
count for 62% of all dynamic instructions in the
benchmarks we examine. Furthermore, these soft
instructions can tolerate random single-bit errors up
to a fault rate of 8 × 10−6.

This paper is the initial study on exploiting
soft computations for increased fault tolerance in
general-purpose systems. In the future, we plan to
continue our study on soft computations using more
detailed processor models, for example RTL models.
We are also interested in studying how soft compu-
tations can be exploited for performance in addition
to fault tolerance.
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