Appears inProceedings of the 11th Annual International Conference on Parallel Architectures and Compilation Techniques,
Charlottesville, VA, September 2002.

Transparent Threads: Resource Sharing in SMT Processors
for High Single-Thread Performance

Gautham K. Dorai and Donald Yeung
Department of Electrical and Computer Engineering
Institute for Advanced Computer Studies
University of Maryland at College Park
{gauthamt,yeung@eng.umd.edu

Abstract 1 Introduction

Simultaneous Multithreading (SMT) processors achieve high  simultaneous multithreading (SMT) processors achieve high
prOCESSOfthrOUghpUt at the expense ofsingle-thread performance.processor throughput by exp|oiting ILP between independent
This paper investigates resource allocation policies for SMT pro- threads as well as within a single thread. The increased processor
cessors that preserve, as much as possible, the single-thread perthroughput provided by SMT, however, comes at the expense of
formance of designated “foreground” threads, while still permit-  single-thread performance. Because multiple threads share hard-
ting other “background” threads to share resources. Since back- ware resources simultaneously, individual threads get fewer re-
ground threads on such an SMT machine have a near-zero perfor-sources than they would have otherwise received had they been
mance impact on foreground threads, we refer to the background running alone. Furthermore, existing resource allocation poli-
threads adransparent threadsTransparent threads are ideal for  cjes, such as ICOUNT [25] and FPG [13], favor threads with high
performing low-priority or non-critical computations, with appli-  ||_p, steering resources to threads whose instructions pass through
cations in process scheduling, subordinate multithreading, and on- the pipeline the most efficiently. Threads that utilize processor
line performance monitoring. resources less efficiently receive fewer resources and run even

To realize transparent threads, we propose three mechanismsgjower.
for maintaining the transparency of background threads: slot pri-  Our work investigates resource allocation policies for SMT
oritization, background thread instruction-window partitioning, processors that preserve, as much as possible, the single-thread
and background thread flushing. In addition, we propose three performance of designated high-priority or “foreground” threads,
mechanisms to boost baCkgrOUnd thread performance without SacCyhile still permitting other |OW_priority or “background” threads
rificing transparency: aggressive fetch partitioning, foreground to share resources. Our approach allocates resources to foreground
thread instruction-window partitioning, and foreground thread threads whenever they can use them and regardless of how ineffi-
flushing. We implement our mechanisms on a detailed simulator ciently those resources might be used, thus permitting foreground
of an SMT processor, and evaluate them using 8 benchmarks, inthreads to run as fast as they would have run on a dedicated SMT
cluding 7 from the SPEC CPU2000 suite. Our results show when machine. At the same time, we only allocaareresources to
cache and branch predictor interference are factored out, back- hackground threads that foreground threads would have otherwise
ground threads introduce less than 1% performance degradation |eft idle, thus allowing background threads to share resources with-
on the foreground thread. Furthermore, maintaining the trans- gyt degrading foreground thread performance. Since the back-
parency of background threads reduces their throughput by only ground threads on such an SMT machine are imperceptible to the

23% relative to an equal priority scheme. foreground threads (at least from a resource sharing standpoint),
To demonstrate the usefulness of transparent threads, we studyye refer to the background threadst@ssparent threads
Transparent Software PrefetchifSP), an implementation of Transparent threads are ideal for performing low-priority or

software data prefetching using transparent threads. Due to its non-critical computations. Several applications of multithreading

near-zero overhead, TSP enables prefetch instrumentation for alljnyolve such low-priority computations, and thus map naturally
loads in a program, eliminating the need for profiling. TSP, with- onto transparent threads:

out any profile information, achieves a 9.52% gain across 6 SPEC

benchmarks, whereas conventional software prefetching guided byProcess Scheduling. Transparent threads can assist in
cache-miss profiles increases performance by only 2.47%. scheduling multiprogrammed workloads onto SMT processors.
When a latency-sensitive process enters a multiprogrammed work-
load (for example, when an interactive process receives an event),
This research was supported by NSF Computer Systems Architecture grang| non-latency-sensitive processes can be down-graded to run as
#CCR-0093110 and NSF CAREER Award #CCR-0000988. transparent threads. During the time that the latency-sensitive or




foreground process is active, the transparent threads yield all pro-transparent threads in the context of multiprogramming. These
cessor resources necessary for the foreground process to run axperiments stress our mechanisms using diverse workloads, and
fast as possible. At the same time, the transparent threads are nateveal the most important mechanisms for enforcing transparency
shut out completely, receiving any resources that the foregroundacross a wide range of applications. We find our mechanisms are
process is unable to use. quite effective, permitting low-priority processes running as trans-

. . . parent threads to induce less than 1% performance degradation
Subordinate Multithreading.  Transparent threads can sup- o high-priority processes (excluding cache and branch predictor
port subordinate multithreading [5, 8]. Subordinate threads per- jnierference). Furthermore, our mechanisms degrade the perfor-
form computations on behalf of a primary thread to increase its mance of transparent threads by only 23% relative to an equal pri-
performance. Recently, there have been several proposals fogyity scheme. Second, we stuliiansparent Software Prefetching
subordinate multithreading, using subordinate threads to perform(tsp) an implementation of software data prefetching of affine
prefetching (also known agre-execution[2, 6, 7, 12, 18, 26],  and indexed array references [15] using transparent threads. By
cache management [9], and branch prediction [5]. Unfortunately, off_joading prefetch code onto transparent threads, we achieve vir-
the benefit of these techniques must be weighed against their costy,a|ly zero-overhead software prefetching. We show this enables
If the overhead of subordinate computation outweighs the opti- software prefetching for all candidate memory references, thus
mization benefit, then applying the optimization may reduce rather g|iminating the need to perform profiling a priori to identify cache-
than increase performance. For this reason, detailed profiling iSmissing memory references. Our results show TSP without profile
necessary to determine when optimizations are profitable so thatnformation achieves a 9.52% gain across 6 SPEC benchmarks,
optimizations can be applied selectively to minimize overhead.  \yhereas conventional software prefetching guided by cache-miss

Transparent threads enable subordinate multithreading opti-profiles increases performance by only 2.47%.

mizations to be appliedll the time Since transparent threads — The rest of the paper is organized as follows. Section 2 presents
never take resources away from foreground threads, subordinatg,yr mechanisms in detail. Next, Section 3 describes our simulation
threads that run as transparent threads incur zero overhead; hencgamework used to perform the experimental evaluation. Then,
optimizations are always profitable, at worst providing zero gain. section 4 studies transparent threads in the context of multipro-
With transparent threading support, a programmer (or compiler) gramming and Section 5 studies TSP. Section 6 discusses related
could apply subordinate threading optimizations blindly. Notonly ok, Finally, Section 7 concludes the paper.

does this relieve the programmer from having to perform profiling,
but it also increases the optimization coverage resulting in poten-

tially higher performance. 2 Transparent Threads

Performance Monitoring. Finally, transparent threads can This section presents the mechanisms necessary to support
execute profiling code. Profiling systems often instrument profile transparent threads. First, Section 2.1 discusses the impact of re-
code directly into the application [3, 11, 21]. Unfortunately, this source sharing on single-thread performance in an SMT proces-
can result in significant slowdown for the host application. To min- sor. Next, Section 2.2 presents the mechanisms for transparently
imize the impact of the instrumentation code, it may be possible sharing two classes of resources, instruction slots and buffers, and
to perform the profiling functionality inside transparent threads. discusses possible solutions for transparently sharing a third class,
Similar to subordinate multithreading, profile-based transparent memories. Finally, Section 2.3 presents the mechanisms for boost-
threads would not impact foreground thread performance, and foring transparent thread performance.

this reason, could enable the use of profiling code all the time.

This paper investigates the mechanisms necessary to realizg'l Resource Sharing

transparent threads for SMT processors. We identify the hardware Figure 1 illustrates the hardware resources in an SMT proces-
resources inside a processor that are critical for single-thread Pergor pipeline. The pipeline consists of three major components:
formance, and propose techniques to enable background threadgy . hardware (multiple program counters, a fetch unit, a branch
to share them transparently with foreground threads. In this paper, e gictor, and an I-cache), issue hardware (instruction decode, reg-
we study the transparent sharing of two resources that impact pefigier yename, instruction issue queues, and issue logic), and exe-
formance the mostinstruction slotsandinstruction buffers We cute hardware (register files, functional units, a D-cache, and a
also discuss transparently sharing a third resouremoriesbut reorder buffer). Among these hardware resources, three are dedi-
we do not evaluate these solutions in this paper. Next, we propose.aieq Each context has its own program counter and return stack
t(_echnlques to boqst transpart_ent thread performance. Usmg_our ba. the return stack is part of the branch predictor module in Fig-
sic resource sharing mechanisms, tr_ansparent threads receive hgr ire 1). In addition, each context effectively has its own register file
ware resources only when t:ey Zre idle. Uﬂ'db?r these co?servatlveas well since the integer and floating point register files, while cen-
\ellisumptlons, C};e_tr)spirentht reads '::andex ibit Eoor per Ormaﬂcftralized, are large enough to hold the architected registers from all
e propose additional techniques that detect when resources heldl,yvaytg simultaneously. All other hardware resources are shared
by foreground threads are not critical to their performance, and between contexts
aggressively reallocate them to transparent threads. Simultaneously executing threads increase processor through-
To study the effectiveness of our techniques, we undertake an ut by keeping shared hardware resources utilized as often as
experimental evaluation of transparent threads on a detailed SM‘If)OSSible but degrade each others’ performance by competing for
simulator. Our evaluation proceeds in two parts. First, we study yoqe resources. The goal of transparent threading, therefore, is to



M o S ufnpits B
Q . .

'cCCJ B Sketch Floating Point | Issue . fp 3

% E <> it oC Instruction Queusq Logic registerfeg—p-
o

A
+ * int Reorde

M
Instruction Cache i Integer sIssue int Id-st (&
1 unit
Instruction Queud ™ Logic [™] registerdeg—p]> Buffer
B S i
Instruction %eec?sdtzr/ | e Cach
Fetch Queue [™ Re%ame ata Cache -

Figure 1. SMT processor hardware (diagram adapted from [25]). Each shared hardware resource is labeled with a letter signifying
one of three resource classes: instruction slots (S), instruction buffers (B), and memories (M).

allocate a shared resource to a background thread only when it issharing has a less direct impact on foreground thread performance.
not competing with a foreground thread for the same resource. ToRather than taking an execution resource away from the fore-
provide more insight, we group the shared hardware resources intaground thread, the use of memory resources by a background
three classes—instruction slots, instruction buffers, and memories-thread can increase the number of performance-degrading events
and discuss their resource allocation properties. Each shared reexperienced by the foreground threae.( branch mispredictions
source in Figure 1 is labeled with its resource class, using the la-and cache misses). Similar to instruction buffers, the impact does
bels “S,” “B,” and “M,” respectively. not occur at the time of use, but rather, at a point in the future.
Instruction slots are pipeline stages. The fetch, decode, re-
name, issue, writeback, and commit stages contain instruction2,2  Transparency Mechanisms
slots, typically equal in number to the width of the machine.
In addition, functional units also contain slots, typically one per Having discussed the resource sharing problem in Section 2.1,
functional unit per cycle of latency (assuming a fully pipelined we now present several mechanisms that permit background
unit). Instruction buffers hold stalled instructions. Figure 1 shows threads to share resources transparently with the foreground
four buffers: the instruction fetch queue holds fetched instructions thread. We present one mechanism for sharing instruction slots,
waiting to be decoded and renamed, the integer and floating pointtwo for sharing instruction buffers, and finally, we discuss possi-
instruction queues hold instructions waiting on operands and/or ble solutions for sharing memories.
functional units, and the reorder buffer holds instructions waiting . o
to commit. Finally, memories are cache structures. The I- and D- Instruction Slots: Slot Prioritization.  Since instruction
caches as well as the branch predictor tables in Figure 1 make ugslots are normally held for a single cycle only, we allocate an in-
this category. struction slot to a background thread as long as the foreground
The ramifications for allocating a shared resource to a back- thread does not require the slot on the same cycle. If the fore-
ground thread depend on its resource class. Allocating an instruc-ground thread competes for the same instruction slot resource, we
tion slot to a background thread impacts the foreground thread ongive priority to the foreground thread and retry the allocation for
the current cycle only Instructions normally occupy slots for a  the background thread on the following cycle. We call this mech-
single cycle. While there are exceptions to this rule (for example anismslot prioritization
aload instruction that suffers a cache miss in its data-cache access As described in Section 2.1, every pipeline stage has instruc-
Stage)’ we f|nd these cases do not create resource Conﬂicts fretion S|OtS; hOWeVer, we implement Slot prioritization in the fetCh
quently. Therefore, background threads can use instruction slots@nd issue stages only. We find that prioritizing slots in additional
transparently as long as there is no conflict with the foreground PiPeline stages does not increase the transparency of background
thread on the cycle of allocation. In contrast, allocating an instruc- threads. To implement slot prioritization in the fetch stage, we
tion buffer entry to a background thread potentially impacts the Modify the SMT processor’s fetch priority scheme. Our default
foreground thread ofuture cycles Instructions typically occupy ~ Scheme is ICOUNT [25]. When choosing the threads to fetch from
buffers for many Cyc|es' particu|ar|y in the reorder buffer Where in_ on eaCh CyCIe, we art|f|C|a”y increase the inStrUCtion count for a“
structions remain until all preceding instructions (including those Packground threads by the total number of instruction window en-
performing long-latency operations) commit. Therefore, allocat- tries, thus giving fetch priority to foreground threads always re-
ing a buffer entry to a background thread can cause resource con- 1one shared resource left out of our discussion here is rename registers.
flicts with the foreground thread in the future even if the resource From our experience, there is very little contention on rename registers
is idle on the cycle of allocation. given a reasonable number of them. Hence, we do not consider rename
Compared to instruction slots and buffers, memory resource register sharing in our design of transparent threads.




gardless of their instruction count values. Background threads re-occurs when the reorder buffer is full). For simplicity, we trigger
ceive fetch slots only when the foreground thread cannot fetch, for flushing only when the foreground thread is unable to allocate a
example due to a previous I-cache miss or when recovering fromreorder buffer entry.
a branch misprediction. Slot prioritization in the issue stage isim- ~ Once flushing is triggered, we select a background thread to
plemented in a similar fashion. We always issue foreground threadflush. We compare the ICOUNT values of all background threads
instructions first; background thread instructions are consideredand pick the thread with the largest value. From this thread, we
for issue only when issue slots remain after all ready foreground flush the N youngest instructions in the reorder buffer, whérfe
thread instructions have been issued. is the width of the machine. (If the background thread occupies
. . fewer thanN reorder buffer entries, we flush all of its entries).
Instruction Buffers: Background Thread Instruction- Any instructions in the integer or floating point instruction queues
Window Partitioning.  Compared to instruction slots, trans- . rresponding to flushed reorder buffer entries are also flushed. In
parently allocating instruction buffer resources is more challeng- 4qgition, we flush all instruction fetch queue entries belonging to
ing because resource allocation decisions impact the foregroundy;s thread. Finally, we roll back the thread’s program counter and
thread on future cycles. It is impossible to guarantee at allo- reqister file map to the youngest unflushed instruction. Notice our
cation time that allocating an instruction buffer entry to a back- fj,shing mechanism is similar to branch misprediction recovery;
ground thread will not cause a resource conflict with the fore- aretore, most of the hardware necessary to implement it already
ground thread. Determining this would require knowing for how  gyists. However, our mechanism requires checkpointing the reg-
long the background thread will occupy the entry as well as know- jgier file map more frequently since we flush to an arbitrary point
ing the number of buffer entries the foreground thread will request i, the reorder buffer rather than to the last mispredicted branch.

in the future. _ o In Section 3, we will discuss techniques for reducing the cost of
We propose two solutions for transparently allocating instruc- implementing background thread flushing.

tion buffers. First, we limit the maximum ICOUNT value for compared to background thread instruction-window partition-
background threads. When a background thread reaches this injhg  phackground thread flushing requires more hardware support;
struction count limit, it is not allowed to consume fetch slots however, it potentially permits background threads to share in-

even if the foreground thread leaves some fetch slots idle. Thegction buffer resources more transparently. Background thread
background thread remains Iocl_<ed out of_the fetch stage until 'tsflushing guarantees the foreground thread always gets instruc-
ICOUNT value drops. We call this mechanisrackground thread  jon puffer resources, using pre-emption to reclaim resources from

instruction-window partitioning S ~ background threads if necessary. At the same time, background
The background thread instruction-window partitioning  ¢hread flushing can provide higher throughput compared to back-

scheme ensures the total number of background thread instrucy ound thread instruction-window partitioning. If the foreground

tions in the instruction fetch queue and the reorder buffer never yhreaq does not use a significant number of instruction buffer en-
exceeds its instruction count limit. Notice this does not guaran- yjes, the background threads can freely allocate them because
tee that background threads never take instruction buffer resourcegnere is no limit on the maximum number of entries that back-
away from the foreground thread. If the foreground thread tries
to consume most or all of the instruction buffer resources, it can
still “collide” with the background threads in the buffers and be Memories: Possible Solutions. As our results in Section 4
denied buffer resources. However, this scheme limits the damagewill show, sharing instruction slot and instruction buffer resources
that background threads can inflict on the foreground thread. By has the greatest impact on foreground thread performance, while
limiting the maximum number of buffer entries allocated to back- sharing memories has a less significant performance impact. For
ground threads, a large number of entries can be reserved for thehis reason, we focus on the first two classes of resources, and we
foreground thread. do not evaluate mechanisms for transparently sharing memories in
i . this paper.
Instruction Buffers: Background Thread Flushing. In We believe memory resourcesg, branch predictor tables and
oursecoqd scheme for transparently allocating mstrucU_on bUﬁ?rS'caches, can be transparently shared using approaches similar to
we permit background threads to occupy as many instruction yh,qe described above. One possible approach is to limit the max-
buffer entries as they can (under the constraint that the foreground; ., ,m number of locations that a background thread can allocate
threa_d gets all the_ fetch slqts it requests), but we pre-emptively ;, the memories. Memory resources are used by mapping an ad-
reclaim buffer entries occupied by background threads when nec-gress to a memory location. For branch predictors, a combination

essary. We call this mechanigmackground thread flushing of the branch address and a branch history pattern is typically used
~ Background thread flushing works in the following manner. 1, index into the branch predictor table. For caches, a portion of
First, we trigger background thread flushing whenever the fore- y,q effective memory address is used to index into the cache. Con-
groqnd thread tries to al]ocate an instruction puﬁer gntry but all sequently, utilization of the memory resources can be limited by
entries of t_hat _type are filled. There are four |_nstruct|on _buffers, modifying the mapping function and using a reduced number of
as shown in Figure 1, whose allocation can trigger flushing: the 5qress bits to form the index. Background threads can use the
instruction fetch queue, the integer and floating point mstructpn modified mapping function, hence using a fewer number of mem-
queues, and the reorder buffer. Among these four instruction oy |ocations. Foreground threads can use the normal mapping

buffers, we have observed that reorder buffer contention is re- ¢y ction to access the full resources provided by the memories.
sponsible for the most performance degradation in the foreground

thread (in fact, contention for the other instruction buffers usually

ground threads can hold.



2.3 Performance Mechanisms background thread may rarely get buffer entries even if it is allo-
cated fetch slots.

In Section 2.2, we focused on maintaining background thread  We propose two solutions for increasing background thread in-
transparency; however, achieving high background thread perfor-struction buffer allocation that mirror the mechanisms for transpar-
mance is also important. Unfortunately, as Section 4 will show, the ently allocating instruction buffers presented in Section 2.2. First,
resource sharing mechanisms presented in Section 2.2 can starvgist as we limit the maximum ICOUNT value for background
background threads, leading to poor performance. This sectionthreads, we can also limit the maximum ICOUNT value for fore-
presents several additional mechanisms for increasing resource alground threads. When the foreground thread reaches this instruc-
location to background threads without sacrificing transparency. tion count limit, it is not allowed to consume additional fetch slots
We present one mechanism for increasing fetch slot allocation, andyntil its ICOUNT value drops. We call this mechanigoneground
two mechanisms for increasing instruction buffer allocation. thread instruction-window partitioning

. . T By limiting the maximum number of foreground thread in-
Fetch Instruction Slots: Fetch Partitioning. The most structions in the instruction buffers, we reserve some buffer en-

important instruction slot resources are the fetch slots because thq‘ries for the background threads. However, similar to background

frequency with which a thread receives fetch slots determines S thread instruction-window partitioning, this approach is not com-

maximum throughput. As described in Section 2.2, fetch slot pri- pletely transparent since it allows background threads to take re-

?rl_tlz”at!on alwgys t%'vpié grtlJo’\rlléy tol the f(?rtigrgung threag tt;y arctjl- sources away from the foreground thread. The performance im-
iclay Increasing e vajues ot the background fhreads. pact can be minimized, though, by choosing a large foreground
Even though the foreground thread always gets priority for fetch, thread ICOUNT limit

the background thread can still get a significant number of fetch
slots if the SMT employs an aggressfegch partitioning scheme  Instruction Buffers: Foreground Thread Flushing. The

The most basic fetch partitioning scheme is to permit only one second scheme for increasing background thread instruction buffer
thread to fetch every cycle, and to give all the fetch slots to that allocation is to pre-emptively reclaim buffer entries occupied
single thread. Assuming an ICOUNT fetch priority scheme, this by the foreground thread, and to reallocate them to background
basic fetch partitioning scheme is called ICOUNN125], where threads.e., foreground thread flushingWhile arbitrary flushing
N is the fetch width. Under ICOUNT. NV with slot prioritization, of the foreground thread will degrade its performance, the impact
background threads receive fetch slots only when the foregroundcan be minimized if flushing is initiated at appropriate times. We
thread cannot fetch at all. If the foreground thread fetches eveninitiate foreground thread flushing when a cache-missing load in-
a single instruction, allV fetch slots on that cycle are allocated struction from the foreground thread reaches the head of the re-
to the foreground thread since only one thread can fetch per cy-order buffe? During such long-latency memory stalls, the in-
cle. In our SMT processor model, we assume the only times thestruction buffer entries occupied by the foreground thread do not
foreground thread cannot fetch are 1) if it has suffered an I-cachecontribute to its throughput, so flushing will have minimal im-
miss, in which case it stalls until the cache miss is serviced, or 2) pact on performance. After flushing, we temporarily disallow the
if it has suffered a branch mispredict, in which case it stalls until foreground thread from fetching new instructions, thus permitting
mispredict recovery completes. background threads to fetch into and use the flushed entries. Then,

If instead of allowing only a single thread to fetch per cycle, after some number of cycles, we commence fetching for the fore-
multiple threads are allowed to fetch per cycle, then background ground thread with the intent of fully recovering the flushed in-
threads can receive significantly more fetch slots. In this paper, westructions by the time the memory stall completes.
evaluate the ICOUNT.2V [25] fetch partitioning scheme which To avoid degrading foreground thread performance, the num-
chooses up taV instructions for fetch from 2 threads every cycle. per of flushed instructiondy, and the number of cycles we allow
Under ICOUNT.2N with slot prioritization, the foreground thread  for flush recoveryl’, must be commensurate with the number of
still gets highest priority for fetch; however, background threads cycles that the cache-missing load remains stalled at the head of
can fetch anytime the foreground thread is unable to consume allthe reorder buffer. We call this time thiesidual cache-miss la-
N fetch slots on a given cycle. In our SMT processor model, we tency R. If R is large, we can afford to flush more foreground
assume the foreground thread terminates fetching on a given cyclehread instructions since there is more time for recovery, thus free-
if it encounters a predict-taken branch or if it fetches up to an I- ing a larger number of buffer entries. HoweverHfis small, we
cache block boundary. Under these assumptions, it is rare for themust limit the number of flushed instructions since the recovery
foreground thread to fetchV instructions per cycle, opening up  time is itself limited. Because we expeRtto vary on every cache
significantly more spare slots for background threads to consume.miss, we rely on hardware to estimateach time we initiate fore-
ground thread flushing, and then select appropfiaéadT values

{/T/.Str(jUCt'OS Ei.li.ffer_s: Fo_ltﬁgroung. Threac:( InStrr]ucFlon- d to dynamically control the number of flushed instructions and the
indow Partitioning. e combination of mechanisms de- timing of flush recovery.

scribed in Section 2.2 can easily starve background threads of in- We use a cycle counter for every foreground thread load in-
struction buffer resources. Since the foreground thread always gets
fetch priority under slot prioritization, and since the background  *Similar to background thread flushing, we flush the youngest fore-
thread’s allocation of instruction buffer entries is limited under ei- ground thread instructions from the tail of the reorder buffer, all corre-
ther background thread instruction-window partitioning or back- sponding instructions in the integer and floating point instruction queues,

. o . and all instructions in the instruction fetch queue belonging to the fore-
ground thread flushing, it is possible for the foreground thread to

; ] - ground thread.
consume all instruction buffer resources. Once this happens, the




Processor Parameters R <8 F=0 T=0
Hardware Contexts 4 8<R<16 F=8 T=4
Issue Width 8 16<R<32 | F=16 | T=8
Fetch Queue Size 32 entries 32<R F=48 | T=16
Instruction Queue Size 32 Int, 32 FP entries|
Load-Store Queue Size 64 entries Table 2. Choice of the number of instructions to flugh,
Reorder Buffer Size 128 entries and the number of flush recovery cycl@s,as a function of
Int/FP Units 8/8 the residual cache-miss latendy,
Int Latency 1 cycle
FP Add/Mult/Div Latency 2/4/12 cycles
Rename Registers 100 Int, 100 FP

Branch Predictor Parameters . . .

Branch Predictor Hybrid gshare/Bimodal the fetch bandwidth necessary, our I-cache model contains 8 in-
gshare Predictor Size 4096 entries terleaved banks, and accounts for all bank conflicts. In addition
Bimodal Predictor Size 2048 entries to simulating contention for I-cache banks, we also simulate con-
Meta Table Size 1024 entries tention for rename registers. We assume all contexts share 100
BTB Size , 2048 entries integer and 100 floating point rename registers in addition to the
Return-of-Stack Size 8 entries per-context architected registers, as indicated in Table 1.

Memory Parameters . . . .
[1Cache Size 32K T and 32K D (spi) As dgscrlbed in _Sectlon 2.3, our foreground thread fI_ushlng
L2 Cache Size 512K (unified) mechanism dynamically selects the number of instructions to
L1/L2 Block Size 32/64 bytes flush, F', and the number of flush recovery cyclé@s,based on the
L1/L2 Associativity 4-way/4-way residual cache-miss latendy, at the time flushing is initiated. Ta-
L1/L2 Hit Time 1/10 cycles ble 2 reports thé” and7 values used by our simulator for a range
Memory Access Time 122 cycles of R values. Since our flushing mechanisms (for both background

and foreground threads) flush to an arbitrary point in the reorder
buffer, they require frequent register map checkpointing (see Sec-
tion 2.2). For maximum flexibility, checkpointing every instruc-
tion would be necessary. To reduce hardware cost, however, our
simulator models checkpointing every 8th instruction only. When
struction that suffers a cache miss to estimaté/Nhen a load in- flushing is triggered, we compute the number of instructions to
struction initially suffers a cache miss, we allocate a cycle counter flush as normal, described in Sections 2.2 and 2.3 for background
to the load, clear the counter contents, and increment the counteand foreground thread flushing, respectively. Then, we flush to
on every cycle thereafter. When the cache-missing load reacheghe nearest checkpointed instruction, rounding up when flushing
the head of the reorder buffer, we compuiteby subtracting the the background thread (more aggressive) and rounding down when
counter’s value from the main memory miss penalty. In Section 3, flushing the foreground thread (more conservative).

we will discuss the choice df' andT values as a function aR. In addition to the hardware specified in Tables 1 and 2, our sim-
ulator also provides ISA support for multithreading. We assume
support for afork instruction that sets the program counter of a
remote context and then activates the context. We also assume sup-
port for suspend andresume instructions. Both instructions

from [14]. This simulator uses the out-of-order processor model exepute |n.1 cycle; hoyvevesuspend causes a pipeline f.IUSh of
all instructions belonging to the suspended context. Finally, we

from SimpleScalar v2.0, augmented to simulate an SMT pipeline. assume support forkill  instruction that terminates the thread
To evaluate transparent threads, we extended this basic SMT sim- pp

ulator to model the mechanisms presented in Section 2, namelyrunnmg in a specified context ID. Our multithreading ISA support

the two mechanisms for sharing instruction slots (slot prioritiza- ?S used ex_tensively f_or perfprming Transparent Software Prefetch-
tion and fetch partitioning) and the four mechanisms for sharing |ng:rdedsc_:r|bed Iat_er '? tS.eCtl(;ndS' the 8 benchmarks listed
instruction buffers (background and foreground thread instruction . 0 drive our simulation study, we use the & benchmarks liste

) o in Table 3. Four of these benchmarks are SPECInt CPU2000
window partitioning, and background and foreground thread flush- benchmarks, three are SPECfp CPU2000 benchmarks, and the last

ing). Table 1 reports the simulator settings we use in our experi- is an iterative PDE solver for computational fluid dynamics prob
ments. These settings model a 4x8-way issue SMT processor Witl’\ . P . dynamics prob-
ems. In all our experiments, we use functional simulation to fast

32-entry integer and floating point instruction queues and a 128- o .
y 9 gp q forward past each benchmark’s initialization code before turning

entry reorder buffer. detailed simulation. The size of the fast forward and simulated
When simulating our instruction window partitioning schemes, on detaried simuiation. 1he size o Ine fast forward and simuiate
regions are reported in the last two columns of Table 3.

we assume a maximum background and foreground thread
ICOUNT Ilimit of 32 and 112 instructions, respectively. For
fetch partitioning, our simulator models both the ICOUNT.1.8and 4 Evaluating Transparent Threads

ICOUNT.2.8 schemes, as discussed in Section 2.3. ICOUNT.2.8

requires fetching 16 instructions from 2 threads (8 from each  Our experimental evaluation of transparent threads consists of
thread) on every cycle [25], and using slot prioritization to se- two major parts. First, in this section, we characterize the perfor-
lect 8 instructions out of the 16 fetched instructions. To provide mance of our transparent threading mechanisms. Then, in Sec-

Table 1. SMT simulator settings used for the experiments.

3 Simulation Framework

Our simulation framework is based on the SMT simulator



1.0
0.8

0.6

Normalized IPC

0.2 |
0.0
EP BP
SP

PC EP BP
BF PP sp

VPR-BZIP

PC EP

BF PP sP
VPR-GZIP

BP PC

BF PP

VPR-EQK

EP BP
SP  BF

VPR-ART

PC
PP

ART-BZIP

EP BP PC EP BP PC EP BP PC
SP BF PP SP  BF PP SP  BF PP

ART-VPR ART-EQK EQK-GZIP

Figure 2. Normalized IPC of the foreground thread when running simultaneously with a single background thread. The bars
represent different transparent sharing mechanisms: equal priority (EP), slot prioritization (SP), background thread instruction
window partitioning (BP), background thread flushing (BF), private caches (PC), and private predictors (PP).

Name Type Input FastFwd Sim o

VPR SPECIint 2000| reference | 60M 233M =R

BzIP SPECint 2000| reference | 22M 126M 2 osl

GzZIP SPECint 2000| reference 170M 140M £ L

EQUAKE | SPECfp 2000 | reference 18M 1186M ="

ART SPECfp 2000 | reference 20M 7iM 0.4

GAP SPECint 2000| reference 105M 157M 02

AMMP SPECfp 2000 | reference 110M 2439M 00

IRREG PDE Solver 144K nodes| 29M 977M “EP  BP PC EP  BP  PC

sP BF PP sP BF PP

VPR-BZIP-ART-GZIP  EQUAKE-BZIP-ART-GZIP

Figure 3. Normalized IPC of the foreground thread when

running simultaneously with three background threads. The
bars are the same as those in Figure 2.

Table 3. Benchmark summary. The first three columns
report the name, type, and inputs for each benchmark. The
last two columns report the number of instructions in the
fast forward and simulated regions.

tion 5, we investigate using transparent threads to perform soft-as foreground and background threads.
ware data prefetching.
4.2 Background Thread Transparency

4.1 Methodolo
9y Figures 2 and 3 report the normalized IPC of the foreground

This section characterizes the performance of our transparenthread when running simultaneously with a single background
threading mechanisms by studying them in the context of mul- thread and with three background threads, respectively. Groups
tiprogramming. We perform several multiprogramming experi- of bars represent sets of simultaneously running benchmarks, each
ments, each consisting of 2 - 4 benchmarks running simultane-specified with a label that names the foreground benchmark first
ously on our SMT simulator. A single benchmark from the work- followed by the background benchmark(s). Bars within each
load is selected to run as a foreground thread, while all other group represent different transparent sharing mechanisms from
benchmarks run as background threads. From these experimentsection 2.2 applied incrementally. In particular, the first four bars
we observe the degree to which our mechanisms maintain back-report normalized IPC with no mechanisme( all threads have
ground thread transparency (Section 4.2) as well as the ability ofequal priority), with slot prioritization, with background thread
our mechanisms to increase transparent thread throughput (Sednstruction window partitioning and slot prioritization, and with
tion 4.3). background thread flushing and slot prioritization, labeled EP, SP,

From the 8 applications listed in Table 3, we use the first 5 BP, and BF, respectively. All experiments use the ICOUNT.2.8
for our multiprogramming experiments, grouping benchmarks to- fetch partitioning scheme, with all other background thread per-
gether based on resource usage characteristics. Of particular sigormance mechanisms disabled. Finally, all bars are normalized
nificance is a benchmarksorder buffer occupancyBenchmarks to the IPC of the foreground thread running on a dedicated SMT
with high reorder buffer occupancy (typically caused by frequent machine i.e., without any background threads).
long-latency cache misses) use more instruction buffer resources, Figure 2 shows background thread flushing with slot priori-
whereas benchmarks with low reorder buffer occupancy use fewertization (BF bars) is the most effective combination of transpar-
instruction buffer resources. Among the 5 benchmarks we use,ent sharing mechanisms. With these mechanisms, the foreground
BZIP and ART have high occupancy, EQUAKE and GZIP have thread achieves 97% of its single-thread performance averaged
low occupancy, while VPR has medium occupancy. In order to across the 8 benchmark pairs, compared to only 70% of single-
stress our mechanisms and to study their behavior under diversghread performance when pairs of benchmarks are run with equal
workload characteristics, we group together benchmarks that ex-priority (EP bars). Background thread instruction window parti-
hibit both high and low reorder buffer occupancy, using both types tioning with slot prioritization (BP bars) also provides good trans-



Ly
=}

BZIP and ART have high instruction buffer occupancy. In Fig-

& |

2 o8 I I ﬁ:jﬁken Branch ure 2, we see that any workload using these benchmarks as a back-

g 06 B Unusea Fq Fui ground thread exhibits poor foreground thread performance under

5 oa Unused Branch Mispredict equal priority. When using equal priority, BZIP and ART fre-

g I I quently compete for instruction buffer entries with the foreground
02 | thread, degrading its performance. Consequently, in these work-
00+ loads, background thread flushing significantly improves fore-

VPR BZIP GZIP EQUAKE ART

) ground thread performance since flushing reclaims buffer entries,
Figure 4. Fetch slot usage for our benchmarks when each  making the foreground thread resilient to background threads with
benchmark is run on a dedicated SMT processor. high instruction buffer occupancy. Conversely, Figure 4 shows
GZIP and EQUAKE have low instruction buffer occupancy. In
Figure 2, we see that any workload using these benchmarks as
parency, with the foreground thread achieving 91% of its single- ?ngizl;gd(;gg? ;2[;?%?22;5”;3%??; ?]:)é%;zrteég;%l;nsut: iiiﬁjgﬁir;(;
thread performance; however, our results show BP is less effective Second, anytime a Wo;kload uses a benchmark with a large

tf:cfan E’F n ﬁ” c_asetsh S]!Ot prlorltlzatlr(])n a(ljo:e (S:_ bars) IIS tgjo/lea?t “IFQ Full” component as a foreground thread, slot prioritization
.? ec |vc|a, ;OWI(;IQ fe oregrounF. reas ﬁac 'fll/e only Oﬂ provides a large foreground thread performance gain and back-
IS single-thread periormance. Figureé 5 SNows the same qualita-y 4 thread flushing becomes less important. In Figure 2, the

e r$S”'tShas F'g‘?r? 2, .der?ons”a“”g o mecrl‘t‘f"r:'sgs aro lUS' SART-VPR and ART-EQK (and to some extent, ART-BZIP) work-
eliective when maintaining transparency for multipie backgroun loads exhibit this effect. When slot prioritization is turned on, ART

thrza:\;si,h Lantified the transparency of our backaround threads gets all the fetch slots it requests and thus acquires a large number

We now egxgmine the extent topwhich{he fore rour?d thread’s per. 'of instruction buffer entries (due to its high instruction buffer occu-
. . grot P pancy), resulting in a large performance boost. At the same time,

formance degradation is due to sharing memories, a type of re-

) . he background thread receives fewer buffer entries, reducing the
source sharing that our mechanisms do not address. In our SM'I1 g 9

erformance impact of flushing.
model, threads share two types of memory structures: caches ang P 9

branch predictor tables. To isolate the impact of sharing these4 3 T t Thread Perf
structures on foreground thread performance, we replicate them,™" ransparen read Ferlormance

thus removing any contention due to sharing. The last two bars of
each group in Figures 2 and 3 report the normalized foreground . - A
thread IPC assuming the best mechanisies those used for the using background thread flushing and slot prioritization for the

BF bars) when each context has private L1 and L2 caches (Pcmultlprogrammed WorkloaQS from Figure 2. Bars within each
workload group represent different transparent thread performance

bars), and when each context has both private caches and a Pl echanisms from Section 2.3 applied incrementally. Specifically,

vate branch preQIctor (PP.bars). These results show when cach\eNe report normalized IPC with the ICOUNT.1.8 fetch partition-
and branch predictor conflicts are removed, the foreground thread. . . . .

. . o ing scheme without and with foreground thread flushing, with
achieves essentially all of its single-thread performance. We con-

. the ICOUNT.2.8 fetch partitioning scheme without and with fore-
clude that our mechanisms enable the background threads to USE ound thread flushing. with the ICOUNT.2.8 scheme and fore-
instruction slots and instruction buffers in a completely transpar- g 9 -

ent fashion, and that further improvements in foreground thread ground thread instruction window partitioning, and with no mech-

) A anisms {.e., equal priority), labeled 1B, 1F, 2B, 2F, 2P, and EP,
performance can only come by addressing memory sharing. respectively. All bars are normalized to the IPC of the background
While Figures 2 and 3 quantify the extent to which background P - g

L thread running on a dedicated SMT machine.
threads are transparent, they do not provide insight into how our Y .
. h g . Not surprisingly, the ICOUNT.1.8 fetch partitioning scheme re-
mechanisms achieve transparency. To address this issue, we first

: o “sults in the lowest background thread performance, allowing the
study how our benchmarks use processor resources. Figure 4 illus; . o
. . background thread to achieve only 19% of its single-thread per-
trates the usage of the fetch stage, a critical SMT resource. In Fig- .
. . formance on average. Going from ICOUNT.1.8 (1B and 1F bars)
ure 4, we break down the total available fetch slots into used and

. . to ICOUNT.2.8 (2B and 2F bars), we see a significant increase
unused slots when each benchmark is run on a dedicated SMT Prog, background thread IPC. This is particularly true in workloads

cessor. Unused slots are further broken down into three categories L u
S where the foreground thread exhibits a large number of “Taken
indicating the cause for the unused slots: wasted slots around

taken branch (after the branch on the same cycle and before thaeBrar.'Ch unusgd fetc.h §Iotsa(g, VPR and EQUAKE as shown.
. . in Figure 4) since this is the resource that ICOUNT.2.8 exploits
target on the next cycle), a full instruction fetch queue, and re-
! . . . compared to ICOUNT.1.8.
covery from a branch mispredict. (A fourth possible category is

L In addition to showing a benefit for aggressive fetch parti-
I-cache stalls, but an insignificant number of unused slots are due,. . - AN
- o . tioning, Figure 5 also shows foreground thread flushing is im-
to I-cache stalls in our benchmarks, so we omit this category in

Fiqure 4 portant across all workloads, for both ICOUNT.1.8 (1F bars) and
gur ): . . ICOUNT.2.8 (2F bars). With foreground thread flushing, the back-
Figure 4 sheds light on why our transparent threading mecha- . o
. - ) ” - ground thread achieves 38% and 46% of its single-thread perfor-
nisms work. First, the “IFQ Full” components indicate the degree

. . : . mance using the ICOUNT.1.8 and ICOUNT.2.8 schemes, respec-
to which our benchmarks occupy instruction buffers, showing that _. S .
tively. Furthermore, our results show flushing is more important

Figure 5 reports the normalized IPC of the background thread



1.0

0.8

0.6

Normalized IPC

0.4
0.2
0.0

B 2B 2P B 2B 2P B 2B 2P B 2B 2P B 2B 2P 1B 2B 2P B 2B 2P B 2B 2P
1F 2F EP 1F 2F EP 1F 2F EP 1F 2F EP 1F 2F EP 1F 2F EP 1F 2F EP 1F 2F EP

VPR-BZIP VPR-GZIP VPR-EQK VPR-ART ART-BZIP ART-VPR ART-EQK EQK-GZIP
Figure 5. Normalized IPC of the background thread when the foreground thread runs simultaneously with a single background
thread. The bars represent different transparent thread throughput mechanisms: ICOUNT.1.8 without (1B) and with (1F) foreground
thread flushing, ICOUNT.2.8 without (2B) and with (2F) foreground thread flushing, ICOUNT.2.8 with foreground thread window
partitioning (2P), and equal priority (EP). All bars use background thread flushing with slot prioritization.

Normalized IPC
o
=]

2P PC 2P PC 2P PC 2P PC 2P PC 2P PC 2P PC 2P PC
2F PP 2F PP 2F PP 2F PP 2F PP 2F PP 2F PP 2F PP

VPR-BZIP VPR-GZIP VPR-EQK VPR-ART ART-BZIP ART-VPR ART-EQK EQK-GZIP

Figure 6. Normalized IPC of the foreground thread when running simultaneously with a single background thread. The bars
represent different transparent thread throughput mechanisms: foreground thread instruction window partitioning (2P), foreground
thread flushing (2F), private caches (PC), and private predictors (PP). All bars use background thread flushing with slot prioritization.

when the foreground thread has a high instruction buffer occu-5  Transparent Software Prefetching
pancy €.g. ART as shown in Figure 4). In these workloads,
foreground thread flushing can provide the background thread This section proposes and evaluates a new subordinate mul-
with significantly more instruction buffer resources, resulting in tithreading technique, called@ransparent Software Prefetching
large performance gains. Interestingly, Figure 5 shows foreground (TSP). TSP performs software data prefetching by instrumenting
thread window partitioning combined with ICOUNT.2.8 (2P bars) the prefetch code in a separgieefetch threadather than inlin-
achieves the highest background thread performance, allowinging it into the main computation code, as is done in conventional
the background thread to achieve 56% of its single-thread perfor-software prefetching [4, 10, 15]. Prefetch threads run as back-
mance (though this comes at a price, as we will see in a moment).ground threads, prefetching on behalf of the computation thread
Overall, we see that foreground thread flushing (2F bars) and in-which runs as a foreground thread. Because they run transparently,
struction window partitioning (2P bars) improve the IPC of the prefetch threads incur near-zero overhead, and thus never degrade
background thread to within 23% and 13% of the equal priority the computation thread’s performance.
scheme (EP bars), respectively. TSP solves a classic problem associated with software
Although our mechanisms improve background thread perfor- prefetching: determining what to prefetch. Since conventional
mance, itis imperative that they do not sacrifice background threadsoftware prefetching incurs runtime overhead, it is important to
transparency in the process. Figure 6 plots the normalized IPC ofinstrument prefetching only for load instructions that suffer a suffi-
the foreground thread for several of the experiments in Figure 5. ciently large memory access latency so that the benefit of prefetch-
This data shows that the increased background thread performancég outweighs the cost of executing the instrumentation code.
of foreground thread instruction window partitioning compared to ldentifying the loads for which prefetching is profitable typically
foreground thread flushing comes at the expense of reduced forefequires gathering detailed cache-miss profiteg,(summary [1]
ground thread performance (the 2F bars achieve 95% of single-or correlation [16] profiles). Unfortunately, such profiles are cum-
thread performance whereas the 2P bars achieve only 84%). Weersome to acquire, and may not accurately reflect memory behav-
conclude that foreground thread flushing is more desirable sinceior for arbitrary program inputs. In contra§tSP eliminates the
it increases background thread performance without sacrificing need for profiling Since transparent sharing mechanisms guaran-
transparency. Similar to Figures 2 and 3, the last two bars of tee prefetch threads never degrade the computation thread's per-
Figure 6 remove cache and branch predictor conflicts from the formance, prefetching becomes profitabledtirloads, regardless
2F bars, showing that practically all of the remaining foreground of their cache-miss behavior. Consequently, TSP can be applied
thread performance degradation is due to memory sharing. naively, without ever worrying about the profitability of a transfor-
mation.



(a) COMPUTATION THREAD (b) PREFETCH THREAD Finally, we insert code to synchronize the prefetch thread with
i B the computation thread. Because the prefetch thread executes only
1 smt_global.param[0] = N; 1 void LOOP1() { R R
2 producer =0, consumer =0; 2 intN = smt_global.param[0]; non-blocking memory references, it naturally gets ahead of the
3 ;g:ﬂnm?glcoqatéxotgstl_,id); 3 /fOF:rgIZ%Q?LiJSPg; ) { computation thread. We use a pair of loop-trip counters to keep
g f‘;;ﬁ':%:;;’i i++) { g prefetch(&blil); the prefetch thread from getting too far ahead. One counter is up-
7 y:yu+ 2l 7 FMainloop® dated by the computation thread (Fig. 7a, line 6), and another is
g }x =x+albli]; g forrélfzgc:d?;m;i%ﬁﬂ){ updated by the prefetch thread (Fig. 7b, line 12). Every iteration,
10 KILL(cxt_id); 10 Srefetch(&a[b[i]]); ' the prefetch thread compares the two counters, and continues only
(c) DISPATCHER LOOP 1 Do if they differ by less than the desirguiefetch distancgl5]; other-
1 void DISPATCHER( { 51 do l{ﬂ docers < ol wise, the prefetch thread _busy-wal_ts (_F_lg. 7b, lines 13-14). Whll_e
2 vm%(:% c{IContext(cxt a I } while (producer > consumer : the prefetch thread may incur a significant number of busy-wait
4 (resumelD)(); - ig /; Ep?lpg_uNe_L,ggp * instructions, these instructions execute transparently.
2 }} ig (;))rr%é:c_ﬂga[[t]))%]{]) Note, for indexed array _refe_rences,_we insert prologue and epi-
prefetch(&z[i]);
20 broducorsr: logue loops t(_) softwe_lre pipeline thg index array ar!d data array
21 do{ prefetches (Fig. 7b, lines 3-6 and lines 16-23). This technique,
2 }}Wh"e (producer > consumer + PD).  phorrgwed from conventional software prefetching for indexed ar-
rays [15], properly times the prefetch of serialized index array and

. . . . rray references.
Figure 7. TSP instrumentation example. (a) Computation data array references

thread code. (b) Prefetch thread code. (c) Dispatcher loop

for implementing a recycled thread model. 5.2 Performance Evaluation

In this section, we evaluate the performance of TSP, and com-
pare it against two versions of conventional software prefetch-
5.1 Implementation ing: one that naively instruments prefetching for all load instruc-
tions, and one that uses detailed cache-miss profiles to instrument
Instrumenting TSP involves several steps. First, we select anyPrefetching selectively. For selective software prefetching, we use
loop containing one or more affine array or indexed array refer- @ predicate to evaluate prefetch profitability, and only instrument
ences as a candidate for prefetch instrumentation. When nestedhose static loads for which the predicate is true:
loops are encountered, we consider prefetch instrumentation for  pre fetchOverhead <  Llmiss_rate * L2nit_time +
the inner-most loop only. (Fig. 7a shows an inner-most loop which
we will use as an illustrative example). For each selected loop, we

copy the loop header and place itin a sepapaééetch procedure We assume a per-load prefetch cost of 12 instructions and an
(Fig. 7b, line 8). Inside the copied loop, we insert prefetch state- |pC of 1.5, yielding a prefetch overhead of 8 cycles per dynamic
ments for each affine array and indexed array reference appearingoad. The L1 and L2 miss rates are acquired by performing cache-
in the original loop body (Fig. 7b, lines 9-11). miss profiling in each benchmark’s simulation region given in Ta-
Second, we insert code into the computation thread to initiate ple 3, and we use the L2 hit time and Memory latency reported
the prefetch thread (Fig. 7a, lines 1-4). Since this code is executedn Table 1. Once candidate loads have been selected, we instru-
by the computation thread, its overhead is not transparent. We usgnent software prefetching by following the well-known algorithm
arecycled thread mod¢22] to reduce the cost of thread initiation.  jn [15]. Instrumentation for both TSP and conventional software
Rather than create a new thread everytime prefetching is initiated,prefetching is performed by hand.
the prefetch thread is created once during program startup, and en-  Figure 8 presents performance results for the different prefetch-
ters a blocking dispatch loop (Fig. 7c). To initiate prefetching, the ing schemes, using 7 out of the 8 benchmarks from Table 3 (we
computation thread communicates”d’ value through memory,  do not evaluate GZIP). In Figure 8, we report the normalized ex-
and executes@sume instruction to diSpatCh the prefetch thread ecution time for no prefetching (NP)’ naive software prefetching
(Fig. 7a, lines 3-4). After prefetching for the computation loop has applied to all candidate loads (PF), selective software prefetching
been completed, the prefetch thread returns to the dispatch |00papp|ied to loads meeting our predicate based on cache-miss pro-
thus “recycling” it for the next dispatch. In addition to thread ini- fijles (PFS), and TSP applied to all candidate loads. Each bar in
tiation Code, we alSO insert kll inStruCtiOn to terminate the the graph is broken down into three Components: t|me Spen’[ ex-
prefetch thread in the event it is still active when the computation ecuting useful instructions, time spent executing prefetch-related
thread leaves the loop (Fig. 7a, line 10). instructions, and time spent stalled on data memory accesses, la-
Third, we insert code to pass arguments. Any variable used peled “Busy,” “Overhead,” and “Memory,” respectively. All values
by the prefetch thread that is a local variable in the computation gre normalized to the NP bars. Finally, a label appears above each
thread must be passed. Communication of arguments is performechar reporting the number of instrumented loops. These numbers
through loads and stores to a special argument buffer in memoryshow a significant reduction in loop coverage when performing
(Fig. 7a, line 1 and Fig. 7b, line 2). Although the computation gelective software prefetching.
thread’s argument passing code is not executed transparently, we  Qur results show TSP outperforms naive conventional software
find this overhead is small since only a few arguments are typically prefetching on every benchmark. Across the 6 SPEC benchmarks,
passed and the argument buffer normally remains in cache. TSP provides a 9.52% performance boost on average, whereas

L2mi55_'rate * Memlatency



M Memory
Overhead

Normalized Execution Time

0
NP PFS NF NP PFS NF NP PFS NF NP PFS NF NP PFS NF NP PFS NF NP PFS NF
PF TSP PF TSP PF TSP PF TSP PF TSP PF TSP PF TSP

VPR BZIP GAP EQUAKE ART AMMP IRREG

Figure 8. Normalized execution time for different prefetching schemes: no prefetching (NP), naive conventional software prefetch-
ing (PF), selective conventional software prefetching (PFS), Transparent Software Prefetching (TSP), antdigRoreground
thread flushing (NF). The label appearing above each bar reports the number of instrumented loops.

naive conventional software prefetching suffers a 1.38% perfor- evaluate fetch policies that favor the foreground thread over the
mance degradation, reducing performance in 4 out of the 6 SPECbackground thread(s). Our approach is similar; however, we focus
benchmarks. This performance discrepancy is due to a 19.6%on mechanisms that permit background threads to share resources
overhead when using naive software prefetching compared to awith the foreground thread in a completely transparent fashion.
1.35% overhead when using TSP. Despite the fact that prefetch-Furthermore, we apply priority mechanisms for slots and buffers
ing is instrumented for all candidate loads, TSP’s negligible over- along the entire pipeline, rather than just for the fetch stage.
head enables it to avoid degrading performance even for overhead- Chappellet al [5] and Dubois and Song [8] proposed subordi-
sensitive benchmarks like GAP and EQUAKE where there is very nate threads as a means for improving main thread performance.
little memory stall. Compared to naive software prefetching, se- In [8], the authors demonstrate stride prefetching can be imple-
lective software prefetching reduces overhead down to 14.13% bymented in software using subordinate threads. Our TSP tech-
using profile information, resulting in a 2.47% performance gain nique is similar, but we use transparent threading mechanisms
averaged across the 6 SPEC benchmarks. However, TSP stilto eliminate the overhead of the subordinate prefetch threads.
outperforms selective software prefetching on every benchmark. Subordinate threads have also been used to execute exception
Even for benchmarks where conventional software prefetching handlers [27], and to pre-execute performance-degrading instruc-
performs exceptionally wellg(g, Irreg), TSP still performs bet-  tions[2, 6, 7, 12, 18, 26]. Our work could be used to minimize the
ter. overhead of these techniques as well.

The performance gains demonstrated by TSP in Figure 8 sug-
gest that transparent threads not only eliminate overhead, but the; Conclusion
also provide enough resources for the prefetch threads to make suf-
ficient forward progress. To evaluate the contribution of our trans- g paper investigates resource allocation mechanisms for
parent thread throughput mechanisms, the last set of bars in Figg\T processors that preserve, as much as possible, the single-
ure 8, labeled “NF,” report the normalized execution time of TSP {54 performance of designated foreground threads, while
without foreground thread flushing. The NF bars clearly show the ;) allowing background or “transparent” threads to share re-
complete set of mechanisms is critical since the performance gainssoyrces. Our mechanisms ensure transparent threads never take
of TSP are significantly reduced when foreground thread flushing performance-critical resources away from the foreground thread,

is turned off. yet aggressively allocate those resources to transparent threads that
do not contribute to foreground thread performance. To demon-
6 Related Work strate the potential uses of transparent threads, our work also pro-

poses an implementation of software prefetching on transparent

Several researchers have studied hardware resource allocat.otnhreads, called Transparent Software Prefetching. TSP solves the
veralres s have studied | W SOurce : 198 assic problem of determining what to prefetch. Due to the near-
mechanisms [13, 23, 24] and operating system scheduling poli-

. . zero overhead of transparent threads, TSP can be applied naively,
(I:BlreoswEil?é 4]2?i]rszogrospl\g-sregrfcl)ﬁsesisrgsté rérglat)ian:tg:xu(eliirj ti;)rrLil”rSeigu?(r:ISS without ever Worrying.about the profitability of a transformation.
led on lona latency memorv operations. Their work was On a suite of muitiprogramming workloads, our results show
tsitiz motivation gbehin d Zeveral Ofy ou? mechan.isms Compared tOtranspare_‘nt threads introduce a 3% foregro_und thread performance
. . ) . degradation on average, and when contention on cache and branch
these previous techniques, however, our work tries to improve

ingle-thread performance rather than focusing solelv on proce predictor resources are factored out, the performance degradation
:Iorgthroughpuf using solely on p %is less than 1% for all workloads. At the same time, transpar-

0 g
Raasch and Reinhardt [17] proposed fetch policies for SMT ent threads run only 23% slower compared to an equal priority

rocessors that consider priority in addition to throughput. The scheme. In our evaluation of Transparent Software Prefetching,
p SSOrs | St priorty 1 ” ughput. They o\ results show TSP achieves a 9.52% performance gain across
assume a single latency-critical foreground thread executes S|mul-6 SPEC benchmarks, whereas conventional software prefetching
taneously with one or more low-priority background threads, and '

degrades performance by 1.38%. Even when detailed cache-miss



profiles are used to guide instrumentation selectively, conven-[12] C.-K.Luk. Tolerating Memory Latency through Software-Controlled
tional software prefetching only achieves a 2.47% performance

gain. The performance advantage of TSP comes from its 1.35%
overhead, compared to a 14.13% overhead for selective software

prefetching.
Based on our preliminary results, we conclude that applica-

tions running on out-of-order superscalar cores leave a significant
number of unused resources that can be allocated to non-critical14]

computations in a completely non-intrusive fashion. We believe

our work has only begun to look at the potential uses for such [15]

“free” execution bandwidth. In future work, we hope to further ex-
plore the applications of transparent threads, including multipro-

grammed workload scheduling, subordinate multithreading opti- [16]

mization, and on-line performance monitoring, as eluded to at the
beginning of this paper.

8

Acknowledgments

The authors would like to thank Dongkeun Kim for contribut-
ing to the simulator development effort. We also thank Seungryul

Choi for helpful discussions, and the anonymous referees for their[1g]

constructive comments on earlier drafts of this paper.

References

(1]

2

S. G. Abraham, R. A. Sugumar, B. R. Rau, and R. Gupta. Predictabil-
ity of Load/Store Instruction Latencies. A6th Annual International
Symposium on Microarchitectyr®ecember 1993.

M. Annavaram, J. M. Patel, and E. S. Davidson. Data Prefetching by
Dependence Graph Precomputation. 2Bth Annual International
Symposium on Computer Architectudeine 2001.

[3] T.Ball and J. R. Larus. Efficient Path Profiling. B9th Annual

(4

(5]

6]

(7]

8

El

[10]

[11]

International Symposium on Microarchitectyi2ecember 1996.

D. Callahan, K. Kennedy, and A. Porterfield. Software Prefetching.
In 4th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systefysil 1991.

R. S. Chappell, S. P. Kim, S. K. Reinhardt, and Y. N. Patt. Simulta-

neous Subordinate Microthreading (SSMT)2Bth Annual Interna-
tional Symposium on Computer Architectukay 1999.

J.D. Callins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic Spec-
ulative Precomputation. 184th Annual International Symposium on
Microarchitecture December 2001.

J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen. Speculative Precomputation: Long-range
Prefetching of Delinquent Loads. #8th Annual International Sym-
posium on Computer Architectyrdune 2001.

M. Dubois and Y. H. Song. Assisted Execution. Tachnical Re-

port CENG 98-25, Department of EE-Systems, University of South- [27]

ern California October 1998.

E. G. Hallnor and S. K. Reinhardt. A Fully Associative Software-
Managed Cache Design. BVth Annual International Symposium
on Computer ArchitectureJune 2000.

A. C. Klaiber and H. M. Levy. An Architecture for Software-
Controlled Data Prefetching. 1b8th Annual International Sympo-
sium on Computer Architecturéay 1991.

J. R. Larus and eric Schnarr. EEL: Machine-Independent Executable
Editing. InACM SIGPLAN Conference on Programming Language
Design and Implementatipdune 1995.

Pre-Execution in Simultaneous Multithreading Processors28th
Annual International Symposium on Computer Architegtuhene
2001.

K. Luo, M. Franklin, S. S. Mukherjee, and A. Seznec. Boosting SMT
Performance by Speculation Control. 16th International Parallel
and Distributed Processing Symposiupril 2001.

D. Madon, E. Sanchez, and S. Monnier. A Study of a Simultaneous
Multithreaded Processor Implementation Elaro-Par, August 1999.

T. Mowry. Tolerating Latency in Multiprocessors through Compiler-
Inserted Prefetching. Ifiransactions on Computer Systerfgbru-
ary 1998.

T. C. Mowry and C.-K. Luk. Predicting Data Cache Misses in Non-
Numeric Applications Through Correlation Profiling.30th Annual
International Symposium on Microarchitectyfi@ecember 1997.

S. E. Raasch and S. K. Reinhardt. Applications of Thread Prioritiza-
tion in SMT Processors. IMultithreaded Execution, Architecture,
and Compilation Workshg@anuary 1999.

] A. Roth and G. S. Sohi. Speculative Data-Driven Multithreading. In

7th International Conference on High Performance Computer Archi-
tecture January 2001.

A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simul-
taneous Multithreading Processor. dth International Conference
on Architectural Support for Programming Languages and Operat-
ing SystemaNovember 2000.

A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic Jobscheduling
with Priorities for a Simultaneous Multithreading Processorinin
ternational Conference on Measurement and Modeling of Computer
SystemsJune 2002.

A. Srivastava and A. Eustace. ATOM: A System for Building Cus-
tomized Program Analysis Tools. lRCM SIGPLAN Conference on
Programming Language Design and Implementatitune 1994.

J. G. Steffan, C. B. Colohan, and T. C. Mowry. Architectural Sup-
port for Thread-Level Data Speculation. Technical Report CMU-
CS 97-188,CMU-CS 97-188, Carnegie Mellon Univerdigvember
1997.

D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. Ir22nd Annual International
Symposium on Computer Architectudeine 1995.

D. M. Tullsen and J. A. Brown. Handling Long-latency Loads in a Si-
multaneous Multithreading Processor. 3éth Annual International
Symposium on Microarchitectyr®ecember 2001.

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm. Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processo23hd An-
nual International Symposium on Computer Architectiiay 1996.

C. Zilles and G. Sohi. Execution-Based Prediction Using Specula-
tive Slices. In28th Annual International Symposium on Computer
Architecture June 2001.

C. B. Zilles, J. S. Emer, and G. S. Sohi. The Use of Multithreading
for Exception Handling. Ir82nd Annual International Symposium
on Microarchitecture November 1999.



