
University of Maryland Technical Report UMIACS-TR-2022-01, May 2022

SRTP: Predicting Store Reuse Time to Improve
ReRAM Energy and Endurance

Devesh Singh, Donald Yeung

ABSTRACT
ReRAM is an attractive main memory technology due to its
high density and low idle power. However, ReRAM exhibits
costly writes, especially in terms of energy and endurance.
Prior studies demonstrate that retention can be traded off for
write energy and endurance by employing soft write opera-
tions with lower currents. But given their reduced retention
times, soft writes require refresh operations to prevent data
loss. Unfortunately, a large number of refreshes are needed
in between writes to infrequently updated data. Hence, a non-
volatile memory system with soft writes still needs traditional
hard writes, and a way to choose between them.

Whether or not soft writes provide a benefit depends on
the amount of time between back-to-back writes to the same
data, which we call the store reuse time. As long as the cost
for the soft write and its refreshes within the store reuse time
window is less than the cost for a hard write, then the original
soft write is profitable. Otherwise, it would have been better
to perform a hard write in order to eliminate the refreshes.

We propose SRTP, a predictor that learns the store reuse
times between back-to-back writes to main memory, and
associates them with static store instructions in a prediction
table. As dynamic stores execute, SRTP predicts whether
a soft or hard write is best based on the magnitude of the
predicted store reuse time. This soft write decision is placed
in the cache hierarchy, and eventually informs the writeback
to main memory to use either a soft or hard write. Our results
show SRTP provides 2.6x - 4.1x improvement in endurance
and 2.9x - 4.2x improvement in write energy over a state-of-
the-art predictor. We also show that SRTP is within 18.5%
of the Oracle policy. Finally, we integrate SRTP with a prior
wear leveling technique, called Ouroboros, and show that
SRTP improves actual memory system lifetime by 5.0x over
a baseline that only performs hard writes.

1. INTRODUCTION
Emerging non-volatile memory technologies, such as resis-
tive random access memory (ReRAM) and phase change
memory (PCM), offer much higher memory capacities com-
pared to DRAM. At the same time, they also provide im-
proved power efficiency since their non-volatility eliminates
the need for refresh operations. Given these benefits, not
only have non-volatile memories been studied extensively in
research [2, 39, 40, 50, 66, 84, 88, 99, 104], but they have also
become commercially available (e.g., Intel’s Optane mem-
ory [25, 27]), leading to their deployment in real systems.

The main disadvantage of non-volatile memories, how-
ever, is the high cost of their writes. Not only do their write
operations incur greater latency than read operations, but

they also consume significantly more energy and cause the
memory system to wear out. One approach for addressing
this problem is to reduce the frequency of writes to the non-
volatile memory. Hybrid memory systems take such an ap-
proach by employing DRAM along with the non-volatile
memory [1, 13, 17, 21, 22, 66, 74, 75, 79]. For example, the
DRAM can be placed in front of the non-volatile memory, act-
ing as a cache that automatically filters the write stream [66].

Rather than reduce the write frequency, another approach
for addressing the high cost of writes in non-volatile memo-
ries is to give up some retention. Writes to ReRAM or PCM
normally employ high currents, long write pulses, and/or
multiple write cycles in order to switch the resistive medium
(either metal oxide for ReRAM or chalcogenide glass for
PCM). This ensures the data persistence that is expected for
storage systems. (For example, the ReRAM from Crossbar,
Inc. has a retention of 10 years [10]). However, in main mem-
ory, years-long retention is overkill since the written data will
be over-written anyways before the retention time expires.

This opens the door to trade off retention for improved
write energy and endurance. In particular, writes to ReRAM
or PCM can be performed using lower currents, shorter write
pulses, and/or fewer write cycles. Such soft writes consume
less energy and incur less wear, but they do not fully switch
the resistive medium. For example, a soft write to ReRAM
forms a smaller conductive filament (CF) within the metal
oxide layer which is susceptible to dissolution [24, 37, 91],
and hence, results in lower retention times.

Given their reduced retention times, soft writes require
refresh operations to prevent data loss. While the refreshes
themselves can also use soft writes, a large number of re-
freshes are needed in between writes to infrequently updated
data, which defeats the purpose of using soft writes in the first
place. Hence, a non-volatile memory system with soft writes
still needs traditional persistent or “hard” writes. Moreover,
the memory system also needs a way to decide when to use
soft writes and when to use hard writes.

Recently, researchers proposed the Region Retention Mon-
itor (RRM) [98] for controlling the selection of soft versus
hard writes in MLC PCM memory systems. Unlike our work
which tries to improve energy and endurance, RRM uses soft
writes to boost performance by reducing the number of write
cycles, and hence the latency, of soft writes compared to hard
writes. RRM tracks write frequency at the page level, and
uses soft writes only for the most frequently written pages.
These “hot pages” are kept in a hardware table which issues
refresh operations to the softly written data. For all other
pages (not found in the table), RRM performs hard writes
instead, thus eliminating many harmful refresh operations.

Although RRM was originally designed for performance,

1

we adapted it to also improve energy and endurance. Un-
fortunately, we find RRM does not translate well to these
other objective functions. The problem is RRM performs
soft / hard write selection using an ad hoc heuristic which is
oblivious to the actual relationship between store locality and
retention time that governs the effectiveness of soft writes.

Specifically, following every soft write, refresh operations
are needed periodically in intervals equal to the retention time,
as shown in Figure 1. Whether or not the soft writes provide
a benefit depends on how much time elapses before the same
data is written to again–i.e., the time interval between write-
backs to the same memory block from the last-level cache
(LLC). In our work, we associate this reuse time back to
the last store instruction that caused the initial writeback, so
we refer to it as the last-touch store reuse time, or simply
the store reuse time. As long as the cost for the soft writes
occurring within this time window is less than the cost for
a hard write, then the original soft write is profitable. Oth-
erwise, it would have been better to perform a hard write in
order to eliminate the refreshes. For instance, if one considers
write energy as the cost metric, then soft writes should be
performed whenever the following inequality holds:

StoreReuseTime
RetentionTime

<
EHdWr

ES fWr
(1)

where ES fWr and EHdWr are the soft and hard write energies,
respectively. (Inequality 1 is the criterion for selecting soft
writes to optimize endurance. Section 2 will discuss optimiz-
ing endurance versus energy in more detail.)

To achieve the greatest gains, a separate selection decision
should be made at every dynamic store instruction. But RRM
is ineffective at such fine-grain control because it aggregates
memory-side access information at a coarse page granularity.
Our work makes the key observation that store reuse times
are correlated to store PCs. Although store locality can vary
significantly across different memory accesses, the accesses
performed by the same static store instruction tend to exhibit
a single dominant store reuse time. By training a CPU-side
predictor on the dominant reuse time for each static store,
Inequality 1 can be predicted accurately for every dynamic
write to main memory. We call this predictor the Store Reuse
Time Predictor, or SRTP.

Numerous prior techniques have leveraged locality infor-
mation for optimizing systems. In particular, many exam-
ples exist in the literature, including cache and TLB replace-
ment policies [11, 30, 33, 48, 52, 69, 83], cache partitioning
techniques [4, 35, 65] or tracking reuse time for DRAM
rows [18, 81]. However, our work differs in that the reuse
times we try to predict are much, much longer. Previous
techniques mainly studied cache reuse, so the reuse times in-
volved were relatively short–on the order of milliseconds. In
contrast, SRTP predicts reuse potentially spanning multiple
soft write retention intervals, which can last several seconds.

Training a predictor on multi-second events could result
in long training times. Moreover, infeasibly large predictors
might be necessary to track the huge number of events that
occur over such long time horizons. Fortunately, store reuse
tends to be stable on a per-store PC basis, as mentioned earlier.
Also, a small number of static store instructions typically
accounts for a large fraction of the dynamic stores executed.

write refresh refresh refresh refresh write. . .

Last-Touch Store Reuse Time

Retention

Time

Figure 1: The profitability of soft writes depends on the
last-touch store reuse time, and hence, the number of
refreshes needed before the next write.

SRTP employs a small buffer, called the Reuse Time Detector
(RTD), tracking only two dynamic instances per static store
instruction. The RTD can learn the most important store
reuse times even when they last for a second or more.

Besides predicting Inequality 1, our technique must also
issue refreshes to the softly written data. Unlike our predic-
tion mechanism which resides on the CPU side, we track
refresh operations on the memory side at the page level, sim-
ilar to RRM. One difference, however, is that our refresh
tracking information is much larger because SRTP capitalizes
on many more soft write opportunities. Whereas RRM com-
bines the prediction and refresh information in the same table,
we decouple them and move the refresh information–which
is much larger but accessed less frequently–to main memory.

Our work also integrates SRTP with wear leveling. We
modify an existing wear leveling technique, Ouroboros [46],
to account for the asymmetric wear across soft and hard
writes. Advanced wear leveling techniques like Ouroboros
already store per-page address translation tables in main mem-
ory. We integrate SRTP’s refresh tracking information into
these existing data structures. Although SRTP’s refresh infor-
mation is large, it only adds 3.8% more memory on top of
Ouroboros’ address translation tables.

Our work makes the following contributions:
• We adapt RRM, which was originally designed for per-

formance, to control soft / hard write selection for im-
proving energy and endurance in ReRAM-based mem-
ory systems.

• We present the Oracle algorithm for selecting soft ver-
sus hard writes, and show that RRM leaves a lot of
room for improvement.

• We propose a novel hardware predictor, called SRTP,
to select soft versus hard writes at the CPU side on a
per-dynamic store instruction basis.

• We integrate SRTP with Ouroboros wear leveling.
• We undertake a simulation-based evaluation of SRTP,

and show that it beats RRM by 410% and comes within
18.5% of the Oracle. We also demonstrate that SRTP
can improve lifetime by 5.0x when coupled with practi-
cal wear leveling.

The rest of this paper is organized as follows. Section 2
presents background on retention versus energy and endurance
tradeoffs. Then, Section 3 provides motivation, and Section 4
describes our SRTP technique. Next, Section 5 discusses
experimental methodology, and Section 6 presents the re-
sults. Finally, Section 7 discusses related work, and Section 8
concludes the paper.

2

Figure 2: Switching in a ReRAM bitcell (from [85]).

2. BACKGROUND
A ReRAM bitcell consists of a metal oxide layer sandwiched
in between two metal electrodes. In the absence of external
influence, this device is in the High Resistance State, or HRS,
as shown in Figure 2(a). When a sufficient voltage is applied
across the terminals, oxygen ions move from the metal oxide
layer to the positive electrode, leaving behind a conductive
filament (CF) of oxygen vacancies. This set operation puts
the device in the Low Resistance State, or LRS, as shown in
Figure 2(d). The device can switch back to HRS by applying
an opposite (negative) voltage to make the oxygen ions trav-
el back into the metal oxide layer and recombine with the
vacancies. This reset operation dissolves the CF.

After a set operation, the CF tends to naturally dissolve
over time (even without an explicit reset) due to migration and
drift of the oxygen vacancies [91]. The time it takes to lose
the stored data depends on the size, or cross-sectional area,
of the CF: the wider the CF, the longer the data lasts, whereas
the narrower the CF, the sooner the data is lost [76, 91, 93].
Retention versus Energy / Endurance Relationship. Each
set operation forms a CF with cross-sectional area, CFA, that
is linearly proportional to the set current, ISET . Likewise, a
subsequent reset operation would need to use a reset current,
IRESET , that is also linearly proportional to CFA in order to
dissolve the formed CF [56]. In our work, we assume writes
employ a fixed voltage and latency, so the write energy is
proportional to ISET and IRESET , and hence, to CFA.

In addition, the endurance of ReRAM bitcells is inversely
proportional to the total write energy absorbed [29, 53, 102].
So, endurance is also inversely proportional to CFA. In other
words, we have the following relationship:

CFA ∝ Write Energy ∝ Endurance−1 (2)

ReRAM is traditionally deployed as a non-volatile memory,
so significant energy is expended during write operations to
form stable CFs that last for years. But Expression 2 shows
that soft writes can use smaller ISET and IRESET , forming and
dissolving narrower CFs, as illustrated by Figures 2(b) and
(c), to both reduce energy and increase endurance [56].

As mentioned above, a narrower CF is less stable, and thus
exhibits reduced retention time. In particular, the retention
time of a ReRAM bitcell is exponential with the diameter of
the CF, CFD [37], leading to the following relationship:

RetentionTime ∝ ep∗CFD (3)

where “p” is a device-specific constant. Worst yet, the ReRAM
bitcells within a large memory system will be subject to
variations, so the actual retention time exhibits a distribu-
tion [9, 91]. The retention time for bitcells at the tail of this

distribution can be further reduced by up to 100x [91]. In our
work, we use the model from [37] to derive retention time
for a given CF size, and then further reduce it by 2 orders of
magnitude to take reliability of the tail bits into account. This
brings the error rate into the range that can be handled by
SECDED Error Correction Codes(ECC) [54]. Simple ham-
ming codes based ECC implementation that only corrects one
bit already has 12.5% storage overhead for 64 bit words [26].
Increasing the error correction capability is not an option as
it will increase both storage and computational overhead by
the factor of correctable bits [73]. Byte addressable main
memories cannot amortize the storage overhead over large
blocks and expensive ECC calculations are difficult to imple-
ment at memory bus speeds resulting into significant area and
performance penalties [26].

In particular, our work employs a soft write that incurs 10x
less energy compared to the basic hard write. As per Expres-
sion 2, this will also yield a 10x increase in write endurance.
To achieve this, CFA would need to reduce by 10x as well,
leading to a 3.2x reduction in CFD. Using Expression 2 and
factoring in 100x for the tail bits, there would be a 52,000x
reduction in retention time. We assume a baseline hard write
retention time of 10 years, which is based on Crossbar’s non-
volatile ReRAM technology [10]. So, the retention time for
soft writes goes down to 10 seconds. This represents a worst-
case retention time (due to the 100x for the tail bits), making
our energy and endurance results conservative.
Soft Write Criterion. Inequality 1 provides the criterion for
selecting soft versus hard writes by weighing the benefit of
soft writes over hard writes against the added refreshes that
soft writes incur. The former, which we call the soft write
advantage (SWA), appears on the right-hand-side of Inequal-
ity 1, and changes depending on the optimization objective.
Inequality 1 shows the SWA for optimizing endurance–i.e.,
SWAend . Because endurance is proportional to write energy
(Expression 2), SWAend is just the ratio of the hard and soft
write energies, which is 10x as discussed above.

Another optimization objective of interest is total energy.
The SWA for total energy, or SWAegy, is not as large as
SWAend because the refresh operations shown in Figure 1
must first perform a read before performing a soft write
(which doesn’t affect endurance but does affect energy). SWA
can also be interpreted as the value at which the overhead of
a single hard write is equivalent to a soft write and (SWA−1)
refreshes. For total energy optimization this gives us:

EHdWr = ES fWr +(ES fWr +ERead)(SWAegy −1)

SWAegy =
EHdWr +ERead

ES fWr +ERead
(4)

where ERead is the read energy. Substituting SWAenergy into
Inequality 1 yields the criterion for optimizing total energy:

StoreReuseTime
RetentionTime

<
EHdWr +ERead

ES fWr +ERead
(5)

3. MOTIVATION
This section motivates our work by quantifying how much
room exists for soft write techniques to improve energy and
endurance. We consider a state-of-the-art soft write selection

3

Region Retention Monitor
Tags Retention Info

hot write_counter decay_countershort_retention
vector

LLC write
Requests

MC write
Requests

Figure 3: Region Retention Monitor hardware table.
(Adapted from [98]).

technique, RRM, adapting it for write energy and endurance
gains. Then, we present the Oracle policy that provides the
upper bound and compare RRM against it. Finally, we discuss
insights into how we can close the gap between them.

3.1 Region Retention Monitor
In general, soft writes should be employed for frequently writ-
ten data, whereas hard writes should be used for infrequently
written data. A natural strategy, therefore, is to profile the
write frequency, and to use the profile for driving soft / hard
write decisions. The Region Retention Monitor (RRM) [98]
is a recent soft write technique that adopts this approach.

Figure 3 illustrates RRM. RRM employs a hardware table
between the LLC and memory controller (MC). The RRM
table observes writes to dirty cache blocks in the LLC and
makes a soft write decision on evictions as they write back
to an NVM main memory. Each entry in the table tracks
information per page. A “write_counter” for a page is incre-
mented whenever an LLC write is issued to the page, and a
“hot” bit is set after a threshold number of LLC writes have
been observed. Initially, writebacks use hard writes, but once
a page’s hot bit is set, writebacks switch to using soft writes.

The RRM table not only controls soft / hard write decisions,
but it is also responsible for issuing refresh operations. Each
entry in the RRM table with the hot bit set periodically issues
refresh operations to its corresponding page. RRM tracks the
memory blocks within a page that have been softly written
using a bit vector, called the “short_retention_vector,” and
only refreshes those memory blocks marked in the bit vector.

After identifying the hot data for soft write candidates, it
is also necessary to detect if and when the hot data transition
back to being infrequently written; otherwise, the refresh op-
erations could nullify the benefits of the soft writes. In RRM,
this is implemented using the “decay_counter.” Periodically,
the decay_counter is incremented until it rolls over, at which
point the write_counter is re-checked to see if it still meets
the threshold for a hot page. If so, the write_counter is re-
duced in half and the decay_counter is reset. If the page stops
receiving writebacks, then the write_counter will eventually
drop below the hot threshold. When this happens, the hot
bit for the page is cleared and hard writes are issued to all
softly written data. This is known as a reset hard write, which
persists the data and allows the RRM table to stop issuing
refreshes to the page.

3.2 Oracle Soft Write Selection
To assess the effectiveness of RRM, we developed the Oracle
policy for selecting soft versus hard writes. As shown in Fig-
ure 1, the best soft / hard write decision depends on how far

Figure 4: Effective SWAend for RRM and Oracle assuming
10 second retention time and 1/10th wear for soft writes.

apart back-to-back writes to the same memory location are. In
our experiments, we simulate an oracle mode which records
the timestamp for every LLC writeback so that this reuse time
can be computed precisely. More specifically, when perform-
ing a writeback, the simulator looks up the timestamp for
the last writeback to the same memory block, and computes
the reuse time. The simulator then uses this reuse time to
evaluate Inequality 1 and determine whether the previous
writeback should have used a soft or hard write. (The Oracle
currently optimizes for endurance; we could also evaluate
Inequality 5 to optimize for total energy). Accordingly, the
simulator attributes (after the fact) the write energy for either
a soft or hard write to the previous writeback. In the case of
a soft write, the simulator also attributes the write energy for

ReuseTime
RetentionTime number of refresh operations as well. Then, the
simulator updates the memory block’s timestamp with the
current time, and continues execution. We implemented this
Oracle policy and compare RRM against it. (Section 5 will
provide more details on our simulator).

Figure 4 shows the endurance results achieved across sev-
eral SPEC CPU2017 benchmarks [72]. In Figure 4, we plot
the total write energy for the soft write technique (either
RRM or Oracle) normalized to the total write energy when
all writes are hard writes. We call this the effective SWAend .
This metric quantifies the improvement in wear out provided
by the soft write technique. (Given the parameters from Sec-
tion 2, the maximum effective SWAend is 10x, which occurs
when every write is a soft write, and there are no refreshes).
For RRM, two sets of bars are reported: “RRM-base” which
employs an RRM table with 4096 entries, matching the orig-
inal RRM paper [98], and “RRM-aggr” which employs a
more aggressive 32,768-entry table.

As Figure 4 shows, there is significant room for improving
RRM. RRM-base has an effective SWAend of just 1.5x. One
reason why these gains are so modest is that RRM-base can
only track 4096 hot pages, which is not enough for our SPEC
2017 benchmarks. When the RRM table is increased to
32,768 entries–i.e., using RRM-aggr–the effective SWAend
jumps to 2.4x. However, Figure 4 shows the Oracle policy
achieves an effective SWAend of 7.6x. Not only is this fully 5x
better than RRM-base, but it is still over 3x better than RRM-
aggr. This motivates the need to bridge the gap between prior
techniques and what is theoretically possible.

3.3 CPU-Side Reuse Time Prediction
The Oracle policy from Section 3.2 knows the future reuse
time for every LLC writeback, and uses it to evaluate Inequal-
ity 1 at each dynamic write. Our work tries to emulate this

4

Figure 5: Reuse time histograms for the top three last-
touch stores from three SPEC CPU2017 benchmarks.

fine-grained soft write selection performed by the Oracle. In
order to do so, we observe the future reuse time for certain
dynamic writes (which the Oracle omnisciently knows for all
writes) and use these samples to predict the soft write crite-
rion (either Inequality 1 or Inequality 5) for every dynamic
store. Our technique is called the Store Reuse Time Predictor,
or SRTP.

Unfortunately, as shown in Figure 4, RRM is not effective
at such predictions. The problem is that RRM keeps memory
access information at the memory side. In order to make
decisions like the Oracle, RRM would have to track access
counts on a per-memory location basis which is completely
out of the question. RRM instead aggregates access counts at
the page level, but even so, the amount of predictor state can
still be very large. This not only results in large predictors,
but it also incurs long training times (training is needed for
every page in memory) which reduces the number of soft
write opportunities that prediction can capitalize upon.

Rather than make predictions from the memory side, SRTP
performs the predictions from the CPU side instead. It ob-
serves the reuse times between writes to main memory, and
uses them to directly assess either Inequality 1 or 5. SRTP
associates the resulting soft write decisions back to the static
store instructions linked to those writes. As the store in-
structions execute again, SRTP predicts for every dynamic
instance either soft or hard write using the soft write decision
previously made for the corresponding static store. Because
there are a much smaller number of static store instructions
than there are memory locations stored to, SRTP’s predictor
state is significantly reduced compared to RRM.

We find that CPU-side prediction can be very accurate
thanks to store correlation. While reuse times can vary sig-
nificantly across different dynamic writes to main memory,
those linked to the same static store instruction tend to exhibit
a single dominant reuse time. To illustrate, Figure 5 shows
the reuse time histograms associated with the top-three static
store instructions (PC0, PC1, and PC2) across three differ-
ent SPEC CPU2017 benchmarks (bwaves, lbm, and x264).
Reuse time correlation around a “peak” is clearly visible
in each histogram. While the peak can be wide for some
benchmarks (lbm) or accompanied by secondary peaks in
other benchmarks (x264, PC0), there is nevertheless a single

dominant reuse time in all cases. Hence, there is also a single
soft write decision dictated by Inequality 1 or Inequality 5
that is appropriate for each static store instruction as well.
By training our predictor per store PC, we can exploit this
correlation to achieve high prediction accuracy.

Unlike prediction, which SRTP performs at the CPU side,
refresh and reset hard writes are tied to specific memory
locations, and must be performed at the memory side. Worse
yet, as we approach the Oracle’s performance, the amount of
softly written data will increase, making the state for tracking
refreshes and resets significantly larger. Fortunately, this state
does not need to be accessed frequently. SRTP decouples the
refresh and reset information from its predictor, and moves
it into main memory to take advantage of higher capacities.
Later, we show how this information can be integrated into
wear leveling data structures.

4. STORE REUSE TIME PREDICTOR
Having motivated potential benefits, we now present the de-
tails of our SRTP technique. SRTP adds new hardware com-
ponents to a multicore CPU. First, the Reuse Time Detector
(RTD) learns the best soft write decision for each static store
instruction by observing store reuse times. Second, the soft-
write predictor (SWP) uses these learned soft write decisions
to predict either soft or hard write for every dynamic store in-
struction. The SWP is replicated per core, with each module
predicting for its associated core. Figure 6(a) shows how the
RTD and SWP are integrated into a multicore CPU. Finally,
SRTP maintains information for driving refresh and reset
hard writes in main memory, which can be integrated with
wear leveling. The rest of this section presents the details.

4.1 RTD
The RTD module, illustrated in Figure 6(b), is an associa-
tive buffer that performs training for the SWP module by
observing reuse times between LLC writebacks. When a
dirty LLC cache block writes back to main memory, a lookup
is performed in the RTD. If no matching entry is found, the
writeback block address (or tag) is filled into the RTD as long
as a free entry exists (label 1⃝ in Figure 6(b)). Also, the time
at which the writeback happened is filled into the RTD along
with its tag (label 2⃝ in Figure 6(b)). Later on, if the same
memory block is written back again, a match in the RTD
will occur, allowing the elapsed time between the two write-
backs to be computed by subtracting the previously stored
time from the time of the matching lookup. This writeback-
to-writeback reuse time can then be used to evaluate either
Inequality 1 or Inequality 5, thus determining whether the
original writeback should have used a soft or hard write.

In addition to the memory block address, each RTD entry
is also tagged with the PC of the store instruction associated
with the writeback (label 3⃝ in Figure 6(b)). To enable this,
we extend a few of the cache tags in the L1, L2, and LLC
with a store PC field (label 4⃝ in Figure 6(d)). Each time a
store hit occurs to a tracked cache block in the L1, we write
the instruction’s PC into this field. Multiple store hits to the
same L1 block simply overwrite each other’s store PC. As
dirty L1 cache blocks are evicted, they transfer their store
PC to the L2 and then to the LLC. Thus, on an LLC write-
back, the store PC used to access / fill the RTD represents

5

VV

L1

Last-Level Cache

core

. . .

RTD

Memory
Controller

L2

SWP

store PC timestamp1tag1 timestamp2

. . .

tag2

PC Tags Writeback Tags / Time

...

V D S

V D S tag

most cache sets (31/32)

sampled cache

V: valid
D: dirty
S: soft write

Tags

... . . .

store PC

tag

Data Blocks

T
ab

le
 1

T
ab

le
 2

T
ab

le
 3

store hash1

hash3

hash2

>2?

+ sets (1/32)

soft write?

L1

core

L2

SWP

L1

core

L2

SWP

a). SRTP Modules d). Caches (L1, L2, LLC)

b). RTD (512 entries, 16-way)

PC

c). SWP (3-bit saturating counters)

1 2

4

3

store
PC

5

(train)
(predict)

6

7

_ >2?_ >2?_

V

Figure 6: The Store Reuse Time Predictor (SRTP) (a) adds two hardware modules (in blue) to a multicore CPU: (b) a
Reuse Time Detector (RTD) and (c) a per-core Soft Write Predictor (SWP). (d) SRTP also extends the CPU’s caches with
soft-write bits and store PC fields.

the last store instruction to hit the cache block prior to the
writeback–i.e., the last-touch store. (Notice, with both store
PCs and memory blocks as tags, an RTD lookup involves
two matches: the store PC is used to both index the RTD and
match one of its ways, and then the memory block address is
used to match one of the data tags associated with the store
PC). To handle aliasing for multi-programmed workloads the
store instruction tag could be extended with core-id bits. For
an average SPEC CPU2017 benchmarks, 76 top last-touch
store instructions are associated with over 90% of writebacks.
Given the small number of important static last-touch stores
and the large number of overall instruction addresses avail-
able, the chances any of these last-touch store instructions
have same PC values for different workloads are minuscule.
This allows us to omit the core-id bits without worrying about
aliasing. The experiments simulate aliasing and the results
for SRTP in Section 6 are pretty close to the oracle.

Because the last-touch store PC is associated with each
writeback’s timestamp, once a match occurs in the RTD and
a reuse time is obtained, we can train the CPU-side (i.e., PC-
based) SWP module by associating the resulting soft-write
decision computed from Inequality 1 or 5 with the store PC.
This is indicated by label 5⃝ in Figure 6(c). In Section 4.2,
we will discuss this training procedure in more detail.

One reason why soft write decisions are so challenging
to learn is because writeback-to-writeback reuse times can
be extremely long, on the order of multiple seconds. In that
length of time, a huge number of dynamic store instructions
forming a huge number of writeback reuses will occur. For-
tunately, the RTD module only needs to track a tiny fraction
of these events for a couple of reasons. First, we find that the
majority of dynamic last-touch stores can be traced back to
a small number of store PCs. Thus, the RTD only needs to
track a few store PCs. For the SPEC CPU2017 benchmarks,
we find that 512 store PCs (i.e., RTD entries) are sufficient to
capture the “working set” of static store instructions respon-
sible for most last-touch stores. To minimize conflicts, we

employ 16-way set associativity in the RTD. (We use an LRU
eviction policy within each set).

Second, as discussed in Section 3.3, most last-touch store
PCs exhibit a single dominant reuse time thanks to store
correlation. Thus, the RTD only needs to sample a small
number of writeback-to-writeback reuse events. In our RTD
implementation, we track just two memory blocks per store
PC, as shown in Figure 6(b), permitting detection of only
two reuses at a time. In addition, because we track so few
memory blocks in the RTD, we only need a fraction of the
cache blocks to carry a store PC field (label 4⃝ in Figure 6(d)).
To minimize the area overhead in the caches, we keep store
PCs in the cache tags for only one out of every 32 sets in
the L1, L2, and LLC. We find that both small RTD entries
and cache set sampling are sufficient to observe the dominant
writeback-to-writeback reuse time for most store PCs.

Due to the long duration of writeback-to-writeback reuse
events, the memory block tags must be allowed to linger in
the RTD for a long time. Hence, we never evict memory block
tags. Instead, the tags are removed when a matching lookup
occurs and we complete a reuse time calculation. We also
detect when a tag’s timestamp expires–i.e., the timestamp
becomes so old that Inequality 1 or Inequality 5 (whichever
one is being used) is guaranteed to be false even though we
have yet to see a reuse occur. In that case, we conclude that
hard write is the correct decision and eagerly remove the tag,
saving the need to wait for the time remaining before the
writeback reuse actually occurs.

4.2 SWP
Each SWP module, illustrated in Figure 6(c), is a predictor
that makes a soft or hard write prediction for every dynamic
store instruction executed in one of the CPU’s cores. (There
are multiple SWP modules in the CPU–one per core located
alongside L1-cache). The predictor we use is adapted from
the gskew branch predictor [51]. To mitigate aliasing, three
separate tables are employed in each SWP module, with each

6

Physical Page

Number
Start Gap S R

Logical Page Number Logical Offset

Physical Page Number Physical Offset

Start Gap

Translation

S: Soft write bit

R: Reset counter

Wear leveling address translation table

Usage

Counter

Demand

Counter

Local

Counter

7b 7b 7b 1b 3b32b32b20b

Figure 7: Wear leveling table with added fields (in red)
for SRTP refresh and reset operations.

table containing a column of 3-bit saturating counters. Store
PCs are used to lookup the predictor. Each lookup indexes
into all three tables, but a different hash function is applied to
the store PC to compute the per-table indices. (So, collisions
may occur in one table but are unlikely to occur in two or
three tables).

As the RTD computes soft write decisions, it trains the
SWP by looking up the 3 counters associated with the tracked
store PC (label 5⃝ in Figure 6(c)) and incrementing each one
of them. The RTD output can be sent to SWP using the
on chip interconnect between LLC and L1-cache. All the
counters are initialized to 0, corresponding to a hard write
prediction, but flip to a soft write prediction once the count
reaches 2. Thus, two soft write outcomes for the same store
PC are needed from the RTD to initiate soft writes for the
corresponding static store instruction.

Simultaneous with training, each CPU core looks up the
SWP whenever a store instruction executes using the store’s
PC (label 6⃝ in Figure 6(c)). Each of the 3 counters in the
predictor associated with the store PC is then compared to the
threshold value (2) to determine whether the counter reflects
a soft or hard write prediction. A majority vote across the
3 counters determines the final soft write prediction for the
store. (By using all 3 counters, destructive aliasing in one
table will not negatively affect the final prediction).

The SWP’s soft write prediction must be recorded in the
caches so that the correct type of write can be performed
upon LLC eviction. We add a soft-write bit or “S-bit” to the
tags in all of the caches. The SWP writes the S-bit in the L1
tag with its prediction (label 7⃝ in Figure 6(c)). The S-bit
is then copied into the L2 and LLC tags as the cache block
is evicted. While we can use set sampling for the store PC
field since it is only involved in training, the S-bit must be
carried in all cache tags so that every dirty cache block can
be written back to main memory with the appropriate write
strength (either soft or hard).

4.3 Refresh, Resets, and Wear Leveling
In addition to soft write prediction, SRTP must also track
the memory pages receiving soft writes for refresh and reset
purposes. As our results will show, SRTP performs many
more soft writes than RRM, which increases the number of
pages that must be tracked. We find SRTP can have 100s of
thousands of softly written pages (compared to just 4K or
32K pages for RRM-base and RRM-aggr). Due to its size,
we implement the tracking data structure in main memory.

The tracking data structure contains two fields. First, there

is a “soft write bit” for each page that indicates whether the
page has been softly written. This bit is similar to RRM’s hot
bit in that it identifies the pages requiring refresh operations.
When a page receives a soft LLC writeback, its soft write bit
is set. The memory controller checks the soft write bits of a
few pages every 10 µsec such that all pages are checked by
the end of a retention period. A refresh command is issued
for the pages with their soft write bits set. When performing
refresh, SRTP refreshes the entire page–it does not further
distinguish softly written memory blocks within a page as
RRM does to minimize the tracking overhead.

SRTP’s tracking data structure also contains a 3-bit “reset
counter” per page. This counter is similar to RRM’s de-
cay_counter, and is used to determine when softly written
pages stop receiving soft writes. It is incremented when the
page is refreshed, but is reset to zero after every 100 soft
writes to the page. If the page stops receiving soft writes,
then the count will continue to rise, signifying that refreshes
are being incurred without any soft write benefit. When the
count reaches a threshold (7), SRTP performs a reset hard
write: it issues a hard write to every memory block in the
page, clears the soft write bit, and stops refreshing the page.

To implement the soft write bits and reset counters, a sepa-
rate standalone table could be created in main memory. How-
ever, we propose to implement SRTP’s tracking data structure
as part of an integrated wear leveling scheme. Wear leveling
is still a problem in soft writable memory systems (soft writes
do not affect how the writes are distributed across memory).
Yet, to our knowledge, no prior soft write technique has con-
sidered integration with wear leveling.

The simplest wear leveling techniques, such as Start-Gap,
use algebraic expressions to remap memory locations [23,
44, 64, 68, 78, 90]. This approach is good at wear leveling
in smaller regions, but because the line movements are not
targeted, there is a chance frequently written lines may wear
out before relocation happens for larger regions. Alterna-
tively, table-based techniques keep a fully associative map-
ping from logical to physical blocks along with per-block
write counts [15, 36, 70, 95, 104]. These techniques are able
to relocate frequently written regions in a timely fashion,
but they incur a larger overhead for the mapping tables. In
our work, we consider Ouroboros, a hybrid technique [45].
Ouroboros divides physical memory into regions and uses
table-based wear leveling across regions. Within a region,
Ouroboros uses Start-Gap to provide wear leveling locally.
Figure 7 shows the table entry format used in Ouroboros.

Ouroboros uses Start-Gap to shift lines in a circular fash-
ion within a region–i.e., page–after a certain number of local
writes (100), tracked by the “local counter.” After a fixed
number of global writes (100 million), Ouroboros migrates a
small number of logical pages (10) that had the highest de-
mand to physical pages with the lowest usage. The “demand
counter” keeps track of the writes to a logical page since its
last migration, and the “usage counter” keeps track of the
overall usage of the physical page.

We propose to integrate SRTP’s refresh and reset informa-
tion into the wear leveling table, which already tracks write
information on a per-page basis. Figure 7 shows the addi-
tion to each Ouroboros table entry in red. The extension of
wear leveling to handle refresh and resets only incurs a 3.8%

7

CPU
Number of cores 4
Core x86, out-of-order, 2GHz
L1 Caches Private, 32 KB I/D, 4-way, 3-cycle hits
L2 Caches Private, 256 KB, 8-way, 7-cycle hits
L3 Cache Shared, 16 MB, 16-way, 27-cycle hits
cache block size 64 B

Main Memory
Memory 667MHz, 8 KB page size, 8 GB capacity
Channels 4
Ranks per channel 4
Banks per rank 8
tRCD (read pulse) 140 cycles (210ns)
tWR (write pulse) 280 cycles (420ns)
tRFC (refresh pulse) 420 cycles (630ns)
Endurance 2 × 106 hard writes per bitcell
Read Energy 2 pJ/bit
Hard Write Energy 30 pJ/bit
Soft Write Energy 3 pJ/bit
Refresh Energy 5 pJ/bit
Soft write retention time 10 seconds
Wear Leveling Local threshold 100 writes, global threshold

108 writes, 10 migrations/global epoch, 128
spare frames

Table 1: Simulation parameters.

increase in the table size.

5. EXPERIMENTAL METHODOLOGY
Architectural simulators are typically used to study events
that exhibit very short time scales. In our work, we are in-
terested in studying ReRAM retention events that can span
several seconds. Hence, high-speed simulation is essential for
our evaluation. At the same time, cycle accuracy is important
too since we need to faithfully model the reuse times that
drive soft write decisions. We use the Zsim multicore simu-
lator [67] for our evaluation. Currently, Zsim is one of the
fastest simulators available, and can be used to study the time
scales demanded by our research. Zsim also provides detailed
architecture models that enable cycle-accurate simulation. In
particular, we configured Zsim to model a quad-core CPU
with out-of-order cores and a 3-level cache hierarchy. The
top portion of Table 1 reports the CPU parameters that we
used in our experiments.

The main modification we made to Zsim is to add support
for our SRTP technique. Specifically, we added the RTD and
SWP modules described in Section 4. In our experiments,
we model a 512-entry RTD and a 1024-entry SWP, with each
SWP module containing 3072 total entries across its 3 tables.
We also added to Zsim the RRM technique discussed in Sec-
tion 3.1–and modeled two versions of RRM–so that we can
compare SRTP against this prior state-of-the-art technique.
(The RRM and SRTP parameters are given in Tables 3 and 4,
and will be discussed below). Lastly, to enable a limit study,
we implemented the Oracle policy from Section 3.2. This
requires allocating a separate region of memory to shadow
main memory, providing space for the per-memory block
timestamps that the Oracle requires.

Something lacking in Zsim are models of non-volatile
memory. While there exist NVM simulators, none of them
are fast enough to be integrated into Zsim; doing so would
completely sacrifice the ability to study ReRAM retention
events. Fortunately, Zsim exposes many detailed memory

Benchmark WPKI Inst (T) Benchmark WPKI Inst (T)
lbm 17.8 7.1 xalancbmk 0.76 5.1
fotonik3d 11.4 6.1 deepsjeng 0.43 7.4
omnetpp 5.5 4.2 nab 0.36 8
roms 3.84 8 parest 0.3 8
mcf 3.49 3.9 namd 0.21 8
cactuBSSN 2.25 6.1 perlbench 0.17 2.6
wrf 1.86 8 leela 0.13 8
bwaves 1.62 6.6 blender 0.11 7.1
cam4 1.35 8 x264 0.05 7.7
xz 0.79 2.3 imagick 0.005 8

Table 2: Benchmarks used in the study sorted by Write-
backs Per Kilo Instructions (WPKI). Simulated instruc-
tion counts are reported in trillions.

timing parameters that can be configured. We set these pa-
rameters to match models available in NVMain [61], a recent
non-volatile memory simulator, to accurately reflect the tim-
ing characteristics of a ReRAM-based main memory system.

Many different latency, energy, and endurance numbers
have been reported for ReRAM in the literature. In our eval-
uation, we use a base latency (without contention) of 210ns
and 420ns for reads and writes, respectively [77]. Read en-
ergies in the range 1-2.4 pJ/bit [57, 77] and write energies
in the range 4.8-53 pJ/bit [6, 38, 77, 100] have been reported.
We use 2 pJ/bit and 30 pJ/bit for the read and write energies,
respectively. Lastly, endurance values in between 105 and 107

have been provided [7, 10, 16, 20, 96].We use an endurance of
2×106 hard writes per bitcell. The bottom portion of Table 1
reports all of the timing, energy, and endurance parameters
we used in the memory system.

As discussed earlier, SRTP can optimize for either en-
durance or energy. In our evaluation, we optimize for en-
durance, using Inequality 1 as the criterion for soft writes.
Given the parameters in Table 1, the SWA for endurance
is 10x while the SWA for energy (Equation 4) is only 6.4x.
Hence, by optimizing for endurance, our technique will per-
form too many soft writes from an energy standpoint. Nev-
ertheless, we will still provide energy benefits, so Section 6
reports both endurance and energy results even though we
explicitly optimize for endurance.

To drive our simulations, we use the SPEC CPU2017
benchmarks [72]. The 20 benchmarks employed in our study
represent the complete SPEC CPU2017 suite, except for gcc
which failed to run on Zsim, and povray and exchange2
which had barely any writebacks. Table 2 lists the bench-
marks in order of their memory intensity. (The benchmarks
are sorted on column two of Table 2 which reports the number
of writebacks per 1000 instructions, or “WPKI”). We com-
pile the benchmarks using the Gcc compiler with the highest
level of optimization. In every case, we run the benchmark to
completion. On average, the benchmarks were simulated for
6.5 trillion instructions, and exhibited a wall clock time of
1,584 seconds (about 26 minutes). This allows us to observe
numerous ReRAM retention time intervals for each bench-
mark, leading to statistically meaningful results. For our wear
leveling experiments, we further extrapolate multiple runs of
the benchmarks to determine actual lifetimes. Section 6.3
will describe these extrapolation experiments.

In our experiments, we study both homogeneous and mixed
workloads. For the former, we run the same benchmark on all

8

RRM-base RRM-aggr
Sets 256 Sets 2048
Associativity 16 Associativity 16
Hot threshold 4 Hot threshold 4
Decay interrupt 100/16 seconds Decay interrupt 100/16 seconds
Overhead 98 KB Overhead 784 KB

Table 3: RRM parameters and overhead.

4 cores of the CPU. This allows us to study the effectiveness
of our SRTP technique given each benchmarks’ unique access
patterns; yet, it provides a memory access rate appropriate
for a multicore memory system. Mixed workloads, covered
in Section 6.1, run 4 different workloads together.
Hardware Cost. Before presenting results, we compare the
hardware costs for RRM and SRTP. Table 3 shows the config-
uration parameters for two versions of RRM that we evaluate.
“RRM-base” has 4,096 entries (256 sets × 16 ways), requir-
ing a 98 KB table. This is identical to the hardware from the
original RRM paper [98]. “RRM-aggr” is a more aggressive
version of the scheme with 8x more entries–32,768 entries–
and 8x the table size–784 KB. SRTP, on the other hand, adds
two hardware structures, the RTD and SWP modules, and
tracking in the cache tags. These are the structures residing
on the CPU die, and they amount to 69.8 KB. SRTP also
requires 512 KB to track refreshes and resets. This table
is large because SRTP is very successful at capitalizing on
soft write opportunities. However, it can be implemented
off-chip in the non-volatile memory because it is accessed in-
frequently. Moreover, if we integrate SRTP with Ouroboros,
the refresh/reset bits can be folded into the wear leveling
tables with minimal overhead (see Section 4.3).

SRTP modules area and energy. An individual SWP table
is same as the local predictor in tournament branch predic-
tor [34]. We use McPat [42] to get the area and power of this
local predictor in Xeon cores at 22nm technology node. By
extending these numbers for three tables we get 0.028mm2

and 0.05W as area and peak power, respectively, for each
SWP module. Similar calculations are undertaken for RTD
using Cacti [43]. The RTD module needs 0.43mm2 area at
22nm. For SPEC CPU2017 benchmarks on an average RTD
will consume 60µW of dynamic power and 20mW of leakage.
The dynamic power is low because sampling cuts down a lot
of activity in RTD by accessing it only for 1

32 of the write-
backs from LLC. Since, the energy consumption of SRTP
is tiny we can easily ignore it in the energy calculations in
Section 6.

6. EXPERIMENTAL EVALUATION
This section presents our experimental evaluation of SRTP.
We begin by quantifying SRTP’s improvement in endurance,
which is the objective function that our experiments target.
Figure 8 presents these endurance results. In Figure 8, we
plot the effective SWAend achieved by SRTP and compare it
against the Oracle. The graph uses the exact same format as
Figure 4, so the two can be directly compared. (In fact, the
Oracle bars in Figures 4 and 8 are identical). As already men-
tioned in Section 3.2, the Oracle policy achieves an effective
SWAend of 7.6x. Figure 8 shows SRTP’s effective SWAend
is within 18.5% of the oracle at 6.2x. This is a significant

RTD SWP
Sets 32 SWP count 4
PC Associativity (20
bits)

16 Saturating counter en-
try size

3 bits

Addresses/PC (48 bits) 2
Timestamps/PC (32
bits)

2 #Saturating counter
entries

1024

SRAM Overhead 11.7KB SRAM Overhead 1.1 KB
Caches Wear Leveling Table

Soft Write Bit (S) 1/entry Soft write bit 1/entry
Last write PC (20 bits) 1/32 en-

tries
Reset counter (3 bits) 1/entry

SRAM Overhead 57 KB NVM Overhead 512 KB
Total Overhead 69.8 KB SRAM and 512 KB NVM

Table 4: SRTP parameters and overheads.

Figure 8: Effective SWAend for SRTP and the Oracle.

improvement over RRM-base and RRM-aggr from Figure 4,
whose effective SWAend are just 1.5x and 2.4x, respectively.

To provide further insights, Figure 9 breaks down the differ-
ent types of writes performed by RRM (base and aggressive),
SRTP, and the Oracle. In addition to the soft write, refresh,
and hard write categories, Figure 9 also breaks down reset
hard writes into “eviction” and “decay” categories. The evic-
tion category includes resets that occur due to a shortage
of tracking entries. The decay category includes resets that
occur when a technique predicts it is no longer profitable
to continue issuing soft writes to certain memory locations.
All bars are normalized to the total number of writebacks
induced by the application. (Because refreshes and resets
are in addition to the applications’ normal writebacks, the
breakdowns add up to more than 100%).

As Figure 9 shows, SRTP does two things very well. First,
it is able to identify and convert a large fraction of writes
into soft writes. On average, 92% of the application-level
writes for SRTP are soft writes, whereas the percentage of soft
writes for RRM-base and RRM-aggr is only 30% and 51%,
respectively. SRTP is also very close to the Oracle, which
performs 95% of the application-level writes as soft writes.
This is mainly why SRTP’s endurance results in Figure 8 are
superior to RRM and nearly match that of the Oracle. Second,
SRTP also has a very small number of reset hard writes, just
0.6%, whereas the RRM policies have many more reset hard
writes. In particular, RRM-base and RRM-aggr incur 17%
and 5.8% resets, respectively, primarily due to evictions. (By
definition, the Oracle has zero resets since it omnisciently
knows when to perform hard writes).

SRTP uncovers practically all soft write opportunities be-
cause it accurately predicts store reuse time, and applies the
soft write criterion–Inequality 1–to precisely determine the
profitability of soft writes in a fine-grain manner. This mim-
ics the behavior of the Oracle. In contrast, RRM’s soft write

9

Figure 9: Breakdown of different types of writes normalized against the writes without soft write techniques.

Figure 10: Breakdown of memory system energy normalized against main memory energy with only hard writes.

decisions based on coarse-grained page access counts are
inaccurate, missing numerous soft write opportunities. For
instance, we find that many soft write candidates may not
land on a hot page, particularly when access patterns are
sparse. These candidates may still individually exhibit the
store locality that warrants employing soft writes.

In addition to higher accuracy, SRTP also exhibits lower
predictor overhead. The RTD consumes only 11.7 KB, which
is 8 and 67 times smaller than the hardware tables used in
RRM-base and RRM-aggr, respectively. Despite its small
size, the RTD is able to track almost all last-touch store
PCs without incurring many evictions. In contrast, RRM
(and especially RRM-base) exhibits numerous evictions, as
is evident from the reset eviction components in Figure 9.
Overall, SRTP’s CPU-side prediction mechanism is much
lighter weight compared to RRM’s memory-side predictor.
There are simply many more memory locations written to
than there are store PCs writing them.

And lastly, SRTP’s lighter weight mechanism also makes it
more adaptive. Even if RRM were able to track every page in
memory, it would still need to train on every page. Inevitably,
some hard writes would sneak through due to long training
times. In contrast, SRTP only needs to train on the last-touch
store PCs, which can happen rapidly because there are so
few of them. This allows SRTP to make correct soft write
decisions much sooner.

Although our experiments use Inequality 1 to explicitly
optimize for endurance (instead of Inequality 5 to optimize
for energy), they still show significant energy improvements.
Figure 10 presents our energy results. In Figure 10, we plot
the total energy incurred in the memory system normalized
to the energy consumed by the baseline system that always
performs hard writes. The figure also breaks down the total
energy into reads and different types of writes. (Reset hard
writes are folded into the hard write category).

Even though there are 4.5x fewer writes than reads, writes
still consume 76% of the memory system energy, on average,

Mixed workload Benchmarks
mix1 (4 High) lbm, fotonik, omnetpp, roms
mix2 (4 Medium) bwaves, cam4, xz, xalancbmk
mix3 (4 Low) imagick, blender, x264, leela
mix4 (2 High + 2 Low) lbm, fotonik, imagick, blender
mix5 (2 High + 2 Low) omnetpp, roms, x264, leela
mix6 (2 High + 2 Medium) lbm, fotonik, bwaves, cam4
mix7 (2 High + 2 Medium) omnetpp, roms, xz, xalancbmk
mix8 (2 Medium + 2 Low) bwaves, cam4, imagick, blender
mix9 (2 Medium + 2 Low) xz, xalancbmk, x264, leela

Table 5: Mixed multiprogrammed workloads.

as the breakdown of the “Baseline” bars in Figure 10 shows.
For the most write intensive benchmark, lbm, writes account
for 92% of the energy. Unfortunately, on average, RRM-base
provides almost no reduction in energy because it incurs many
reset hard writes due to evictions that nullify its soft write
gains, as discussed above. RRM-aggr does better, providing
a 27% energy reduction on average since its larger hardware
table identifies more soft writes. In contrast, SRTP reduces
memory system energy by 2.4x thanks to a 4.5x reduction in
write energy. This puts SRTP within 8% of the Oracle.

6.1 Mixed Multiprogrammed Workloads
Thus far, we have only considered individual benchmarks
(the same benchmark runs on all 4 cores). We now show
experiments using mixed multiprogrammed workloads. To
create the workloads, we grouped the benchmarks in Table 2
into high, medium, and low write intensity (WPKI) categories,
and then picked 4 different benchmarks at a time with varying
write intensities. Table 5 shows the nine multiprogrammed
workloads that we created and the mix of write intensities
they represent. Figure 11 plots the endurance results for these
workloads in the exact same format as Figures 4 and 8.

Figure 11 shows SRTP does even better on the mixed work-
loads. On average, SRTP achieves an effective SWAend of
6.8x, up from 6.2x in Figure 8. And, SRTP comes within
19.1% of the Oracle (which has an effective SWAend of 8.4x),

10

Figure 11: Effective SWAend for mixed workloads.

Figure 12: Performance impact of soft write techniques.

down from 18.5% in Figure 8. Also, SRTP is 6x and 3.8x
better than RRM-base and RRM-aggr, respectively, up from
4.1x and 2.6x across Figures 4 and 8. SRTP’s performance
increases with write intensity of the benchmarks while the op-
posite it true for RRM. In a mix, write intensive benchmarks
dominate as they contribute the majority of writes. Hence,
SRTP performs even better for multiprogrammed workloads
maintaining its lead over RRM in all cases. Although we
omit the detailed results to save space, energy improvements
are also better for the mixed workloads, with SRTP reducing
total main memory energy by 3x.

6.2 Performance Results
Soft write techniques improve energy and endurance, but they
also add extra refreshes and resets. Although these additional
memory operations are off the critical path of CPU accesses,
they can still affect performance by increasing contention in
the memory system. Figure 12 reports the IPC for the differ-
ent techniques we evaluate. As Figure 12 shows, all of the
soft write techniques incur a very small performance penalty,
indicating that contention effects are minimal. In the case
of SRTP, there is a 4.3% performance degradation averaged
across all 20 SPEC benchmarks. SRTP’s performance hit is
the largest since it is also the most aggressive in issuing soft
writes (and hence, incurs the most refreshes). But, SRTP’s
performance impact is minimal relative to the energy and
endurance gains it provides.

6.3 Wear Leveling Results
Here we analyze the efficacy of SRTP when integrated with
the Ouroboros wear leveling technique from Section 4.3 and
actual lifetime achieved. Since Start-Gap has been demon-
strated to be highly effective in regions much larger than our
page size, we assume perfect wear leveling within a page,
and extrapolate to examine wear leveling across pages by
Ouroboros. For extrapolation, we collect per page write pro-
files for a benchmark at every global migration epoch of
Ouroboros (100 million writes). These profiles are run repeat-
edly on a program that performs Ouroboros’s page migration

Figure 13: Extrapolated lifetime

until all the spare frames (128) are worn out. The number of
runs of the benchmark from extrapolation and the runtime for
a single simulated run gives us the lifetime of the memory
system if the program was run repeatedly until failure.

When integrating with wear leveling techniques, we pro-
pose to use wear out as a guiding metric instead of write
count given that soft and hard writes cause uneven wear out.
Figure 9 shows that for SRTP, hard writes account for only
6.3% of total writes on average, but they are responsible for
40% of wear out. The traditional policy of just considering
write count will negatively impact the lifetime a wear leveling
technique can achieve. To make Ouroboros consider wear
out, demand and usage counters are incremented by 1 for soft
writes and by 10 for hard writes.

Figure 13 compares SRTP’s lifetime against the baseline
system with just hard writes. SRTP lifetime accounts for wear
leveling via extrapolation while the baseline assumes perfect
wear leveling. (So, the gains for SRTP over baseline are
conservative). For SRTP, we report the lifetime when using
the write count metric versus the wear out metric to guide
wear leveling, labeled “SRTP-write-count” and “SRTP-wear-
out,” respectively. On average, we see 6.1% improvement
in lifetime–from 13 years to 13.8 years–due to using the
wear out metric. Overall, SRTP improves average lifetime
of ReRAM from 2.2 years (for the baseline) to 13.8 years, a
gain of 6.3x. Overall, the 6.2x effective SWAend translates to
6.3x improvement in memory lifetime.

7. RELATED WORK
Multi-level cell PCM exhibits a tradeoff between write la-
tency and retention. Previous work leveraged this to improve
performance at the expense of retention. Techniques include
compiler-based approaches [41, 60, 63], NVM as a cache for
SSDs [32], persistent programming frameworks [47], and
architectural techniques [97, 98]. Of these, RRM is the best-
performing technique that (like our work) targets systems
with CPUs and non-volatile main memory [98]. We adapted
RRM to control soft writes for single-level cell ReRAM main
memory to optimize energy and endurance. Our results show
SRTP improves upon RRM significantly.

Mellow Writes [31, 96] improve ReRAM endurance by
spreading the same (or slightly greater) write energy over a
longer write cycle during idle periods in the memory system,
thus minimally impacting contention and performance. Be-
cause a similar write energy is used, Mellow Writes do not
impact the CF size, so retention remains roughly the same.
While Mellow Writes only helps endurance, SRTP improves
both endurance and energy since it employs “true” soft writes

11

that dissipate less energy (though at the expense of reduced
retention time and the need to refresh). Notice, SRTP and
Mellow Writes are orthogonal. SRTP could make its soft or
hard writes mellow, and further improve lifetime.

All of the above works try to reduce the impact of indi-
vidual writes to non-volatile memory. Another direction of
work tries to reduce the number of writes. This includes
techniques that only write the modified bits [5, 8, 12, 19, 89],
encode the data [14, 28, 49, 55, 59, 80, 87, 101], compress the
data [58, 86], or utilize asymmetries in set and reset opera-
tions [8, 71, 89, 92]. All of these techniques are orthogonal to
our work and can be applied on top of soft writes.

Another write reduction technique is LLC management
policies to reduce the number of writebacks [3, 62, 82, 94,
103]. These policies can only target writebacks with short
reuse times, leaving a lot of soft write opportunities. Since
SRTP is agnostic to LLC management, it can adjust to these
techniques as long as the RTD gets the needed information.

8. CONCLUSION
This paper exploits the retention versus energy and endurance
tradeoff that exists in ReRAM. Our work identifies the rela-
tionship between store reuse time, retention time, and soft
write advantage that governs the profitability of using soft
writes for each LLC writeback. We develop an architectural
technique, called SRTP, that learns the dominant store reuse
time on a per-store PC basis, and uses the store locality infor-
mation to predict a soft versus hard write decision at every
dynamic store instruction. We conduct a simulation-based
evaluation of SRTP, and show that it improves endurance by
2.6x to 4.1x compared to a state-of-the-art soft write tech-
nique, RRM. SRTP also comes within 18.5% of the Oracle’s
endurance. Finally, we integrate SRTP with an existing wear
leveling technique and demonstrate that SRTP can improve
actual lifetime by 5.0x.

REFERENCES

[1] N. Agarawal and T. F. Wenisch, “Thermostat:
Application-Transparent Page Management for Two-Tiered Main
Memory,” in Proceedings of the 22nd International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2017.

[2] M. Arjomand, M. T. Kandemir, A. Sivasubramaniam, and C. R. Das,
“Boosting access parallelism to pcm-based main memory,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2016, pp. 695–706.

[3] M. Bakhshalipour, A. Faraji, S. A. V. Ghahani, F. Samandi,
P. Lotfi-Kamran, and H. Sarbazi-Azad, “Reducing writebacks
through in-cache displacement,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 24, no. 2, pp. 1–21,
2019.

[4] J. Chang and G. S. Sohi, “Cooperative Cache Partitioning for Chip
Multiprocessors,” in Proceedings of the International Conference on
Supercomputing, Seattle, WA, June 2007.

[5] J. Chen, R. C. Chiang, H. H. Huang, and G. Venkataramani,
“Energy-aware writes to non-volatile main memory,” ACM SIGOPS
Operating Systems Review, vol. 45, no. 3, pp. 48–52, 2012.

[6] Y.-C. Chen, “Selector-less resistive random access memory (rram)
with intrinsic nonlinearity for crossbar array applications,” Ph.D.
dissertation, 2019.

[7] Z. Chen, H. Wu, B. Gao, D. Wu, N. Deng, H. Qian, Z. Lu,
B. Haukness, M. Kellam, and G. Bronner, “Performance
improvements by sl-current limiter and novel programming methods

on 16mb rram chip,” in 2017 IEEE International Memory Workshop
(IMW). IEEE, 2017, pp. 1–4.

[8] S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique
to improve pram write performance, energy and endurance,” in
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2009, pp. 347–357.

[9] S. Clima, Y. Chen, A. Fantini, L. Goux, R. Degraeve, B. Govoreanu,
G. Pourtois, and M. Jurczak, “Intrinsic tailing of resistive states
distributions in amorphous hfo x and tao x based resistive random
access memories,” IEEE Electron Device Letters, vol. 36, no. 8, pp.
769–771, 2015.

[10] Crossbar, “Crossbar ReRAM Overview.” 2020. [Online]. Available:
https://www.crossbar-inc.com/technology/reram-overview/

[11] C. Ding and Y. Zhong, “Predicting whole-program locality through
reuse distance analysis,” in Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation,
2003, pp. 245–257.

[12] W. Dong, X. Li, Y. Li, M. Qiu, L. Dou, L. Ju, and Z. Jia,
“Minimizing update bits of nvm-based main memory using bit
flipping and cyclic shifting,” in 2015 IEEE 17th International
Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and
Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems. IEEE, 2015, pp. 290–295.

[13] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan, “Data Tiering in Heterogeneous Memory
Systems,” in Proceedings of the 2016 EuroSys Conference, 2016.

[14] D. Feng, J. Xu, Y. Hua, W. Tong, J. Liu, C. Li, and Y. Chen, “A
low-overhead encoding scheme to extend the lifetime of nonvolatile
memories,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 10, pp. 2516–2529,
2019.

[15] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and
D. Mossé, “Increasing pcm main memory lifetime,” in 2010 Design,
Automation Test in Europe Conference Exhibition (DATE 2010),
2010, pp. 914–919.

[16] A. Grossi, E. Vianello, M. M. Sabry, M. Barlas, L. Grenouillet,
J. Coignus, E. Beigne, T. Wu, B. Q. Le, M. K. Wootters et al.,
“Resistive ram endurance: Array-level characterization and correction
techniques targeting deep learning applications,” IEEE Transactions
on Electron Devices, vol. 66, no. 3, pp. 1281–1288, 2019.

[17] T. J. Ham, B. K. Chelepalli, N. Xue, and B. C. Lee, “Disintegrated
control for energy-efficient and heterogeneous memory systems,” in
2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2013, pp. 424–435.

[18] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee,
O. Ergin, and O. Mutlu, “Chargecache: Reducing dram latency by
exploiting row access locality,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016, pp. 581–593.

[19] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger,
“Preventing pcm banks from seizing too much power,” in 2011 44th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2011, pp. 186–195.

[20] Y. Hayakawa, A. Himeno, R. Yasuhara, W. Boullart, E. Vecchio,
T. Vandeweyer, T. Witters, D. Crotti, M. Jurczak, S. Fujii et al.,
“Highly reliable tao x reram with centralized filament for 28-nm
embedded application,” in 2015 Symposium on VLSI Technology
(VLSI Technology). IEEE, 2015, pp. T14–T15.

[21] T. Heo, Y. Wang, W. Cui, J. Huh, and L. Zhang, “Adaptive page
migration policy with huge pages in tiered memory systems,” IEEE
Transactions on Computers, vol. 71, no. 1, pp. 53–68, 2020.

[22] T. Hirofuchi and R. Takano, “RAMinate: Hypervisor-based
Virtualization for Hybrid Main Memory Systems,” in Proceedings of
the ACM Symposium on Cloud Computing, Santa Clara, CA, October
2016.

[23] J. Huang, Y. Hua, P. Zuo, W. Zhou, and F. Huang, “An efficient
wear-level architecture using self-adaptive wear leveling,” in 49th
International Conference on Parallel Processing - ICPP, ser. ICPP
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3404397.3404405

[24] D. Ielmini, F. Nardi, C. Cagli, and A. L. Lacaita, “Trade-off Between

12

https://www.crossbar-inc.com/technology/reram-overview/
https://doi.org/10.1145/3404397.3404405

Data Retention and Reset in NIO RRAMs,” in Proceedings of the
IEEE International Reliability Physics Symposium, May 2010.

[25] Intel, “Intel Optane Technology,” 2017. [Online]. Available:
http://www.intel.com/content/www/us/en/architecture-and-
technology/intel-optane-technology.html

[26] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda,
“Dynamically replicated memory: building reliable systems from
nanoscale resistive memories,” ACM Sigplan Notices, vol. 45, no. 3,
pp. 3–14, 2010.

[27] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance
measurements of the intel optane dc persistent memory module,”
arXiv preprint arXiv:1903.05714, 2019.

[28] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset coding to
extend the lifetime of memory,” in 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2013, pp. 222–233.

[29] M. Jagasivamani, “Resistive ram based main-memory systems:
Understanding the opportunities, limitations, and tradeoffs,” Ph.D.
dissertation, University of Maryland, College Park, 2020. [Online].
Available: https://drum.lib.umd.edu/handle/1903/26228

[30] A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. Emer, “High
Performance Cache Replacement Using Re-Reference Interval
Prediction (RRIP),” in Proceedings of the International Symposium
on Computer Architecture, Saint Malo, France, June 2010.

[31] M. R. Jokar, L. Zhang, and F. T. Chong, “Cooperative nv-numa:
prolonging non-volatile memory lifetime through bandwidth sharing,”
in Proceedings of the International Symposium on Memory Systems,
2018, pp. 67–78.

[32] D. Kang, S. Baek, J. Choi, D. Lee, S. H. Noh, and O. Mutlu,
“Amnesic cache management for non-volatile memory,” in 2015 31st
Symposium on Mass Storage Systems and Technologies (MSST).
IEEE, 2015, pp. 1–13.

[33] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replacement
based on reuse-distance prediction,” in 2007 25th International
Conference on Computer Design. IEEE, 2007, pp. 245–250.

[34] R. Kessler, E. McLellan, and D. Webb, “The alpha 21264
microprocessor architecture,” in Proceedings International
Conference on Computer Design. VLSI in Computers and Processors
(Cat. No.98CB36273), 1998, pp. 90–95.

[35] S. Kim, D. Chandra, and Y. Solihin, “Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture,” in Proceedings
of the International Symposium on High Performance Computer
Architecture, 2002.

[36] S. Kim, H. Jung, W. Shin, H. Lee, and H.-J. Lee, “Had-twl: Hot
address detection-based wear leveling for phase-change memory
systems with low latency,” IEEE Computer Architecture Letters,
vol. 18, no. 2, pp. 107–110, 2019.

[37] C. Lammie, M. R. Azghadi, and D. Ielmini, “Empirical Metal-Oxide
RRAM Device Endurance and Retention Model for Deep Learning
Simulations,” Semiconductor Science and Technology, vol. 36, 2021.

[38] A. Lee, C.-P. Lo, C.-C. Lin, W.-H. Chen, K.-H. Hsu, Z. Wang, F. Su,
Z. Yuan, Q. Wei, Y.-C. King et al., “A reram-based nonvolatile
flip-flop with self-write-termination scheme for frequent-off
fast-wake-up nonvolatile processors,” IEEE Journal of Solid-State
Circuits, vol. 52, no. 8, pp. 2194–2207, 2017.

[39] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in Proceedings of the
36th annual international symposium on Computer architecture,
2009, pp. 2–13.

[40] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu,
and D. Burger, “Phase-change technology and the future of main
memory,” IEEE micro, vol. 30, no. 1, pp. 143–143, 2010.

[41] Q. Li, L. Jiang, Y. Zhang, Y. He, and C. J. Xue, “Compiler directed
write-mode selection for high performance low power volatile pcm,”
in Proceedings of the 14th ACM SIGPLAN/SIGBED conference on
Languages, compilers and tools for embedded systems, 2013, pp.
101–110.

[42] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures,” in

MICRO 42: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2009, pp. 469–480.

[43] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-p:
Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in ICCAD: International Conference
on Computer-Aided Design, pp. 694–701.

[44] D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. Sha,
“Curling-pcm: Application-specific wear leveling for phase change
memory based embedded systems,” in 2013 18th Asia and South
Pacific Design Automation Conference (ASP-DAC), 2013, pp.
279–284.

[45] Q. Liu and P. Varman, “Ouroboros wear leveling for nvram using
hierarchical block migration,” ACM Transactions on Storage (TOS),
vol. 13, no. 4, pp. 1–31, 2017.

[46] Q. Liu and P. Varman, “Ouroboros Wear-Levling: A Two-Level
Hierarchical Wear-Leveling Model for NVRAM,” in Proceedings of
the International Conference on Massive Storage Systems and
Technology, Santa Clara, CA, May 2017.

[47] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang,
“Nvm duet: Unified working memory and persistent store
architecture,” ACM SIGARCH Computer Architecture News, vol. 42,
no. 1, pp. 455–470, 2014.

[48] W. Liu and D. Yeung, “Enhancing ltp-driven cache management
using reuse distance information,” J. Instr. Level Parallelism, vol. 11,
2009.

[49] H. Luo, L. Shi, Q. Li, C. J. Xue, and E. H.-M. Sha, “Energy, latency,
and lifetime improvements in mlc nvm with enhanced wom code,” in
2018 23rd Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 2018, pp. 554–559.

[50] K. Ma, X. Li, K. Swaminathan, Y. Zheng, S. Li, Y. Liu, Y. Xie, J. J.
Sampson, and V. Narayanan, “Nonvolatile processor architectures:
Efficient, reliable progress with unstable power,” IEEE Micro,
vol. 36, no. 3, pp. 72–83, 2016.

[51] P. Michaud, A. Seznec, and R. Uhlig, “Trading Conflict and Capacity
Aliasing in Conditional Branch Predictors,” in Proceedings of the
24th International Symposium on Computer Architecture, 1997.

[52] S. Mirbagher-Ajorpaz, E. Garza, G. Pokam, and D. A. Jiménez,
“Chirp: Control-flow history reuse prediction,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 131–145.

[53] C. Nail, G. Molas, P. Blaise, G. Piccolboni, B. Sklenard, C. Cagli,
M. Bernard, A. Roule, M. Azzaz, E. Vianello et al., “Understanding
rram endurance, retention and window margin trade-off using
experimental results and simulations,” in 2016 IEEE International
Electron Devices Meeting (IEDM). IEEE, 2016, pp. 4–5.

[54] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “Archshield: Architectural
framework for assisting dram scaling by tolerating high error rates,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp.
72–83, 2013.

[55] K. Namba and F. Lombardi, “A coding scheme for write time
improvement of phase change memory (pcm) systems,” IEEE
Transactions on Multi-Scale Computing Systems, vol. 2, no. 4, pp.
291–296, 2016.

[56] F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, and
D. Wouters, “Control of filament size and reduction of reset current
below 10 µa in nio resistance switching memories,” Solid-State
Electronics, vol. 58, no. 1, pp. 42–47, 2011.

[57] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, “Design
of cross-point metal-oxide reram emphasizing reliability and cost,” in
2013 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2013, pp. 17–23.

[58] P. M. Palangappa and K. Mohanram, “Compex:
Compression-expansion coding for energy, latency, and lifetime
improvements in mlc/tlc nvm,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
2016, pp. 90–101.

[59] P. M. Palangappa and K. Mohanram, “Rapid: read acceleration for
improved performance and endurance in mlc/tlc nvms,” in 2018
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2018, pp. 1–7.

[60] C. Pan, M. Xie, J. Hu, Y. Chen, and C. Yang, “3m-pcm: Exploiting

13

http://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://drum.lib.umd.edu/handle/1903/26228

multiple write modes mlc phase change main memory in embedded
systems,” in Proceedings of the 2014 International Conference on
Hardware/Software Codesign and System Synthesis, 2014, pp. 1–10.

[61] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-) volatile memory systems,” IEEE
Computer Architecture Letters, vol. 14, no. 2, pp. 140–143, 2015.

[62] B. Pourshirazi, M. V. Beigi, Z. Zhu, and G. Memik, “Wall: A
writeback-aware llc management for pcm-based main memory
systems,” in 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2018, pp. 449–454.

[63] K. Qiu, Q. Li, and C. J. Xue, “Write mode aware loop tiling for high
performance low power volatile pcm,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2014, pp. 1–6.

[64] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of pcm-based main
memory with start-gap wear leveling,” in 2009 42nd Annual
IEEE/ACM international symposium on microarchitecture (MICRO).
IEEE, 2009, pp. 14–23.

[65] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” in Proceedings of the International Symposium on
Microarchitecture, 2006.

[66] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High
Performance Main Memory System Using Phase-Change Memory
Technology,” in Proceedings of the International Symposium on
Computer ARchitecture, Austin, TX, 2009.

[67] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems,” ACM
SIGARCH Computer architecture news, vol. 41, no. 3, pp. 475–486,
2013.

[68] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh: Prevent
malicious wear-out and increase durability for phase-change memory
with dynamically randomized address mapping,” ACM SIGARCH
computer architecture news, vol. 38, no. 3, pp. 383–394, 2010.

[69] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The
Evicted-Address Filter: A Unified Mechanism to Address Both
Cache Pollution and Thrashing,” in Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, Minneapolis, MN, September 2012.

[70] A. Seznec, “A phase change memory as a secure main memory,”
IEEE Computer Architecture Letters, vol. 9, no. 1, pp. 5–8, 2010.

[71] S. Song, A. Das, O. Mutlu, and N. Kandasamy, “Improving phase
change memory performance with data content aware access,” in
Proceedings of the 2020 ACM SIGPLAN International Symposium on
Memory Management, 2020, pp. 30–47.

[72] “SPEC CPU2017 Benchmarks. ,” 2017. [Online]. Available:
https://www.spec.org/cpu2017/

[73] D. Strukov, “The area and latency tradeoffs of binary bit-parallel bch
decoders for prospective nanoelectronic memories,” in 2006 Fortieth
Asilomar Conference on Signals, Systems and Computers. IEEE,
2006, pp. 1183–1187.

[74] D. Ustiugov, M. Suterhland, A. Daglis, E. Bugnion,
D. Pnevmatikatos, J. Picorel, and B. Falsafi, “Design Guidelines for
High-Performance SCM Hierarchies,” in Proceedings of the 4th
International Symposium on Memory Systems, National Harbor, D.C.,
2018.

[75] M. Valad Beigi, B. Pourshirazi, G. Memik, and Z. Zhu,
“Deepswapper: A deep learning based page swap management
scheme for hybrid memory systems,” in Proceedings of the ACM
International Conference on Parallel Architectures and Compilation
Techniques, 2020, pp. 353–354.

[76] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki,
“Electrochemical metallization memories—fundamentals,
applications, prospects,” Nanotechnology, vol. 22, no. 25, p. 254003,
2011.

[77] C. Walden, D. Singh, M. Jagasivamani, S. Li, L. Kang,
M. Asnaashari, S. Dubois, B. Jacob, and D. Yeung, “Monolithically
integrating non-volatile main memory over the last-level cache,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 18, no. 4, pp. 1–26, 2021.

[78] G. Wang, F. Peng, L. Ju, L. Zhang, and Z. Jia, “Double circulation
wear leveling for pcm-based embedded systems,” in Advanced
Computer Architecture. Springer, 2014, pp. 190–200.

[79] H. Wang, J. Zhang, S. Shridhar, G. Park, M. Jung, and N. S. Kim,
“Duang: Fast and lightweight page migration in asymmetric memory
systems,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2016, pp.
481–493.

[80] J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xie, “Energy-efficient
multi-level cell phase-change memory system with data encoding,” in
2011 IEEE 29th International Conference on Computer Design
(ICCD). IEEE, 2011, pp. 175–182.

[81] Y. Wang, A. Tavakkol, L. Orosa, S. Ghose, N. M. Ghiasi, M. Patel,
J. S. Kim, H. Hassan, M. Sadrosadati, and O. Mutlu, “Reducing dram
latency via charge-level-aware look-ahead partial restoration,” in
2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 298–311.

[82] Z. Wang, S. Shan, T. Cao, J. Gu, Y. Xu, S. Mu, Y. Xie, and D. A.
Jiménez, “Wade: Writeback-aware dynamic cache management for
nvm-based main memory system,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 10, no. 4, pp. 1–21,
2013.

[83] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. S. Jr., and
J. Emer, “SHiP: Signature-based Hit Predictor for High Performance
Caching,” in Proceedings of the International Symposium on
Microarcitecture, Porto Alegre, Brazil, December 2011.

[84] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang,
S. Yu, and Y. Xie, “Overcoming the challenges of crossbar resistive
memory architectures,” in 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2015,
pp. 476–488.

[85] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie,
“Understanding the trade-offs in multi-level cell reram memory
design,” in 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2013, pp. 1–6.

[86] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, and C. Li, “Extending the
lifetime of nvms with compression,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1604–1609.

[87] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, and W. Zhou,
“Improving performance of tlc rram with compression-ratio-aware
data encoding,” in 2017 IEEE International Conference on Computer
Design (ICCD). IEEE, 2017, pp. 573–580.

[88] D. Xue, C. Li, L. Huang, C. Wu, and T. Li, “Adaptive memory fusion:
Towards transparent, agile integration of persistent memory,” in 2018
IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 324–335.

[89] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A
low power phase-change random access memory using a
data-comparison write scheme,” in 2007 IEEE International
Symposium on Circuits and Systems. IEEE, 2007, pp. 3014–3017.

[90] H. Yu and Y. Du, “Increasing endurance and security of
phase-change memory with multi-way wear-leveling,” IEEE
Transactions on Computers, vol. 63, no. 5, pp. 1157–1168, 2014.

[91] S. Yu, Y. Y. Chen, X. Guan, and H.-S. P. Wong, “A Monte Carlo
Study of the Low Resistance State Retention of HfOx Based
Resistive Switching Memory,” Applied Physics Letters, 2012.

[92] J. Yue and Y. Zhu, “Accelerating write by exploiting pcm
asymmetries,” in 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2013, pp.
282–293.

[93] F. Zahoor, T. Z. A. Zulkifli, and F. A. Khanday, “Resistive random
access memory (rram): an overview of materials, switching
mechanism, performance, multilevel cell (mlc) storage, modeling,
and applications,” Nanoscale research letters, vol. 15, no. 1, pp.
1–26, 2020.

[94] D. Zhang, L. Ju, M. Zhao, X. Gao, and Z. Jia, “Write-back aware
shared last-level cache management for hybrid main memory,” in
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE, 2016, pp. 1–6.

[95] J. Zhang, N. Beckwith, and J. J. Li, “Gordon: Benchmarking optane
dc persistent memory modules on fpgas,” in 2021 IEEE 29th Annual

14

https://www.spec.org/cpu2017/

International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2021, pp. 97–105.

[96] L. Zhang, B. Neely, D. Franklin, D. Strukov, Y. Xie, and F. T. Chong,
“Mellow writes: Extending lifetime in resistive memories through
selective slow write backs,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2016, pp. 519–531.

[97] M. Zhang, L. Zhang, L. Jiang, F. T. Chong, and Z. Liu,
“Quick-and-dirty: An architecture for high-performance temporary
short writes in mlc pcm,” IEEE Transactions on Computers, vol. 68,
no. 9, pp. 1365–1375, 2019.

[98] M. Zhang, L. Zhang, L. Jiang, Z. Liu, and F. T. Chong, “Balancing
Performance and Lifetime of MLC PCM by Using a Region
Retention Monitor,” in International Symposium on High
Performance Computer Architecture, 2017.

[99] W. Zhang and T. Li, “Exploring phase change memory and 3d
die-stacking for power/thermal friendly, fast and durable memory
architectures,” in 2009 18th International Conference on Parallel
Architectures and Compilation Techniques. IEEE, 2009, pp.
101–112.

[100] Y. Zhang, D. Feng, W. Tong, J. Liu, C. Wang, and J. Xu,

“Tiered-reram: A low latency and energy efficient tlc crossbar reram
architecture,” in 2019 35th Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, 2019, pp. 92–102.

[101] Y. Zhang, D. Feng, W. Tong, J. Liu, C. Wang, and J. Xu,
“Tiered-reram: A low latency and energy efficient tlc crossbar reram
architecture,” in 2019 35th Symposium on Mass Storage Systems and
Technologies (MSST), 2019, pp. 92–102.

[102] M. Zhao, H. Wu, B. Gao, X. Sun, Y. Liu, P. Yao, Y. Xi, X. Li,
Q. Zhang, K. Wang et al., “Characterizing endurance degradation of
incremental switching in analog rram for neuromorphic systems,” in
2018 IEEE International Electron Devices Meeting (IEDM). IEEE,
2018, pp. 20–2.

[103] M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé,
“Writeback-aware partitioning and replacement for last-level caches
in phase change main memory systems,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 8, no. 4, pp. 1–21,
2012.

[104] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,”
ACM SIGARCH computer architecture news, vol. 37, no. 3, pp.
14–23, 2009.

15

	Introduction
	Background
	Motivation
	Region Retention Monitor
	Oracle Soft Write Selection
	CPU-Side Reuse Time Prediction

	Store Reuse Time Predictor
	RTD
	SWP
	Refresh, Resets, and Wear Leveling

	Experimental Methodology
	Experimental Evaluation
	Mixed Multiprogrammed Workloads
	Performance Results
	Wear Leveling Results

	Related Work
	Conclusion

