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Abstract in significant waste that, if eliminated, can yield large pow
Hardware designers are constantly looking for ways tosavings without sacrificing much performance.
squeeze waste out of architectures to achieve better pdwer e Several researchers have investigatadhe resizing tech-
ficiency. Cache resizing is a technique that can remove wastaiques[1, 3, 4, 18, 19, 23, 32, 37 to target this form of
ful power consumption in caches. The idea is to determingvaste. Cache resizing is an architecture-level power man-
the minimum cache a program needs to run at near-peak peagement technique that determines the minimum cache a pro-
formance, and then reconfigure the cache to implement thigram needs to run at near-peak performance, and then recon-
efficient capacity. While there has been significant presviou figures the cache by enabling/disabling cache ways or sets
work on cache resizing, existing techniques have focused ao implement this efficient capacity. Resizing can reduee th
controlling resizing for a single level of cache only. The&€s amount of cache activated per access, and also enableis-circu
rifices significant opportunities for power savings in mader level techniquesif., gated-\iq [2F]) to shut down unused
CPU hierarchies which routinely employ 3 levels of cache. portions of the cache. This can translate into significant dy
This paper investigatesulti-level cache resizingMCR).  namic and static power savings. At the same time, though,
MCR independently resizes all caches in a modern cache hiesizing can also increase a cache’s miss rate, resulting in
erarchy to minimize dynamic and static power consumptiorgreater power dissipation for the next level of cache (and de
at all caching levels simultaneously. Specifically, we ytud graded overall performance). Thus, techniques must firesse
a static-optimal version of MCR, and find resizing a 3-levelbalance between these conflicting factors in order to aehiev
hierarchy can reduce total energy dissipation by 58.9% witha net power efficiency gain.
only 4.4% degradation in performance. Our study shows a Although there has been significant work on cache resizing,
non-trivial portion of this gainrd for programs exhibiting  existing techniques are limited in their optimization seop
good temporal locality-comes from optimizing the interacin particular, most studies consider resizing a singlellefe
tions between resizing decisions at different cachingléeve cache only [, 18, 19, 23, 32, 37, typically the L1 cache. In
We also propose several dynamic resizing algorithms that caBalasubramonian’s work3[ 4], two levels of cache are re-
automatically find good size configurations at runtime. Oursjzed, but not independently (the sum of the two cache sizes
results show dynamic MCR can achieve between 40-62% e-fixed). So, there’s still only one cache whose size is expli
ergy savings with slightly higher performance degradationitly controlled.
than static-optimal MCR. The trend for modern CPUs is towards deeper cache hier-
1. Introduction archies, however, yvhich distributes the power consumptior_1
across many caching levels. Today, three levels of cache is
The power wall is currently the main limiter to achievinghig commonplace. For dynamic power consumption, the L1 is
performance in modern CPUs, and has been one of the motte greatest culprit, but the L2 and L3 can also consume non-
critical problems facing computer architects over the pagt  negligible dynamic power, especially for memory-inteesiv
eral years [7]. Unfortunately, this problem will only get workloads. For static power consumption, the L3 is by far the
worse in the future as process technologies continue te scafjreatest concern due to its large area. But non-triviaicstat
to smaller feature sizes. As such, power efficiency will refpower can also be dissipated in the L2 as well. By only con-
main an extremely important design goal, and will requiretrolling the size of a single level of cache, existing tecjugs
hardware designers to continue efforts to squeeze wastefpbtentially miss significant opportunities for power sasn
power consumption out of architectures. The current lack of comprehensive cache resizing is partly
A key place to look for power savings is in the on-chip due to the availability of other power management options,
cache hierarchy. Caches occupy a large portion of the CPU’sspecially for caches below the L1. Because these caches are
available die area—upwards of 50% in today’s CPUs—so thegnly referenced on an L1 miss, CPU performance is some-
contribute significantly to a processor’s overall poweisdis what insensitive to their actual delay. Hence, it is feasibl
pation. In addition, caches are sized for the worst cases Thito trade off delay for power in the post-L1 caches. This has
means an average computation cannot effectively utilizgfal been exploited extensively by circuit-level techniquesit
the cache capacity. Such cache over-provisioning cantresubate static power consumption. In particular, multipledé-



vices [2, 14], adaptive body bias (ABB)1[3, 27], and dynamic  across different caching levels. As mentioned earlierheac
voltage scaling (DVS)q, 15] all convert modest increases in resizing balances the power consumed by a cache against
cache access latency into significant static power redustio the power consumption it inflicts on the next level of cache

While extremely effective, circuit-level techniques foitm  through its cache misses. Notice, a cache’s balance point de
igating static power do not obviate the need for architedtur pends on both the upstream and downstream caches (if any),
approaches like cache resizing. Circuit mitigation ordy ~ which in MCR are themselves resizable. Thus, the optimal
ducedeakage current. In contrast, cache resizing (plus powelMCR configuration is the one that achieves balaglobdally
gating) can suppress leakage practically to zero for thedgat across all the caches at the same time.
portions of cache. Moreover, circuit- and architectuneele To quantify the impact of optimizing such inter-cache in-
approaches are orthogonal. So, applying them in concert mdgractions, we compare static-optimal MCR against an algo-
ultimately yield the greatest static power savings. rithm that only achieves “local balance,” which we csdl-

In addition to flexibility for reducing static power, the low duential MCR We find static-optimal MCR reduces energy
latency sensitivity of post-L1 caches also offer altenesti by 10.4% more than sequential MCR across all the SPEC
for reducing dynamic power. For example, serializing tagbenchmarks. But for the SPECint benchmarks which ex-
and data access ensures only a single data way is energizé®it good temporal locality, static-optimal MCR savés
regardless of the number of total active ways, thus reducingiore energy as compared to sequential MCR. So, while MCR
dynamic power at the expense of some increased delay. B@rovides significant overall power benefits, a non-triviai-p
again, this does not preclude cache resizing. A serial cach&n comes from optimizing inter-cache interactions, whie
still incurs wasteful tag energy as well as significant iober- ~ complex because the interactions grow asgfegluctof the
nect energy that resizing can address. And in some casd¥imber of per-cache configurations.
serial caches may be too slow—for example, at the L2 given Third, we study dynamic resizing algorithms to enable
an L1 with a high miss rate—limiting their application. MCR at runtime. Our dynamic MCR work addresses the run-

This paper investigatasulti-level cache resizingVCR).  time overheads associated with finding the best cache sizing
MCR independently resizes all caches in a multi-level cach&onfigurations for multiple levels of cache using intelhge
hierarchy—using selective cache wayq ps the resizing search and prediction-based techniques. In particulaprore
mechanism—to minimize power consumption at all caching?0se using proportional sizing of non-searched levels ¢e pr
levels simultaneously. Our work quantifies the potentialvide an optimized context for per-level searches. We alee pr
power benefits of MCR, providing insights into where savingsPose using hill-climbing to guide search, enabling seafch o
come from as well as the challenges that must be overcom@ny configuration. Lastly, we propose predicting the best co
in order to attain the full benefits. We also investigate configuration from reuse distance profiles acquired via way eoun
trolling MCR. Cache hierarchies with multiple reconfiguab ters [27]. We call these techniqugsoportional hill climbing,
caches exhibit a large number of sizing configurations. Oundreuse distance-based predictioespectively.
work develops techniques to navigate this complex search Our results show dynamic MCR techniques are quite ef-
space to quickly find the best configurations. Currently, ouifective, providing between 40% and 62% energy savings on
focus is on the cache hierarchy beneath a single tergene ~ average. Reuse distance-based prediction provides thie mos
“vertical slice” of a multicore cache system. While we showenergy savings, with hill climbing also providing good eger
how MCR can be integrated into multicores, evaluating MCRsavings for the SPECint benchmarks, due to the ability to ef-
in a multicore CPU is beyond the scope of this paper. Mordectively optimize inter-cache interactions. We also s
specifically, we make the following contributions. climbing and reuse distance-based prediction incur mare pe

First, we study static resizing algorithms to quantify ke p formance degradation than static-optimal MCR, 7% and 9%,
tential benefits of our approach. Our study presents a stati€eSPectively, due to runtime overheads. Unfortunately, th
optimal version of MCR that uses exhaustive off-line searcHProportional search strategy incurs a 12% performance loss
to find the best sizing configuration. We apply static-optima Pecause it often tries very poor configurations.

MCR to a 3-level reconfigurable cache hierarchy that can sup- The remainder of this paper is organized as follows. Sec-
port 512 unique sizing configurations. (Our cache hierarchyion 2 studies static-optimal MCR, and how inter-cache resiz-
also employs serial access and ABB to provide an efficient’d decisions interact. Then, SectiGrpresents several dy-
baseline). We find static-optimal MCR can reduce total cach@amic MCR techniques, and Sectiérevaluates their power
energy dissipation by 58.9% while degrading performance byenefits and performance. Finally, Sectiodiscusses related
only 4.4% across 22 SPEC CPU2006 benchmarks. Moreové#0rk, Sectiorb addresses multicore issues, and Sectioon-

our results show every caching level contributes signifigan cludes the paper.

Fo the overall savings, und.erscorlr?g the importance ofresi 2. Static-Optimal MCR

ing all the caches in a multi-level hierarchy.

Second, we show that finding the optimal configuration rein this section, we study a static-optimal version of MCR to
quires considering the interactions between resizingsitats  illustrate the potential gains of multi-level resizing @ongro-



vide insights into the interactions between different ¢agh Core
levels. The latter will motivate the potential complexity o 4-way out-of-order issue
controlling MCR, which is relevant for our dynamic MCR 4-entry IFQ, 16-entry ROB, 8-entry LSQ
techniques presented in SectidroOur discussion proceeds in 4-int, 4-FP, 2-ldst
three parts. We begin by describing the experimental metho 1K-entry comb (2K bimod and 1K Gag) predictor
ology. Then, we present our static-optimal results. Lagtly Cache Hierarchy
address multi-level interactions. L1 Cache| split, 32 KB, 8-way, 64-byte blocks
Latency: 2 cycles
2.1. Experimental Methodology Parallel tag, data, and data array h-tree
We use the Simplesca_lar tools for the Alpha ISAfo con- E:;i%ee?%;ﬁrgwo'ong nJ
duct our study. In particular, we model a single out-of-orde || | 5 cache unified, 256 KB, 8-way, 64-byte blocks
core attached to a 3-level cache hierarchy consisting diita sp Latency: 3 cycles
8-way 32KB L1 cache, a unified 8-way 256KB L2 cache, and Paralle tag and data, serial data array h-tree
a unified 16-way 2MB L3 cache. (These cache sizes werg Data Read Energy: 0.7361 nJ
chosen to match typical capacity-per-core found in today’s Leakage (standby/active): 44.09 mW / 2380 mWw
CPUs). The cache block size is 64 bytes for all three cacheg, L3 Cache | unified, 2 MB, 16-way, 64-byte blocks
and the L2 and L3 caches maintain inclusion. Tabliets the Latency: 7 cycles
detailed parameters for the core and cache hierarchy used jn g‘;:‘gggadé‘;z’rg;‘_dldg;% ilr;ay h-tree
our experiments. .
To Ft;nable cache reconfiguration, we modified Sim- Leakage: 88.31 mW /6711 mwW
' DRAM Data Read Energy: 10 nJ

plescalar’s cache module to model way selectiin YWe as-
sume all caches in the hierarchy, except for the L1 I-caalee, a Table 1: Simulation parameters used for the experiments.
reconfigurable and can change their capacity in increménts o
a cache way from 1 to the associativity number of ways in theeverse body bias (RBB) in standby mode to further reduce
cache. (Our work does not consider I-cache resizing, and astandby leakage3[]. When an access occurs, we apply a for-
sumes the I-cache is always fixed). Hence, for our hierarchyard body bias (FBB) to restore the threshold voltage for low
there are 8, 8, and 16 different configurations for the L1, L2access delay. We assume that applying FBB does not impact
and L3 caches, respectivelin the static-optimal version of the access delay for the cacke], We utilize stack effect in
MCR, we try all possible permutations of the per-cache coneonjunction with ABB to model way selectior?§, 30]. We
figurations to identify the one that is most power-effici®v®  use CACTI 6.5 P1] for power modeling and use the Model
use energy delay-squared to quantify power efficiency. (By for Assessment of cmoS Technologies And Roadmaps (MAS-
emphasizing delayED? ensures that optimizing for power TAR 2011) from ITRS P(] to derive parameters required for
does not sacrifice performance too much). To limit the numeACTI according to the assumption.
ber of simulations, we only try configurations with an even  To drive our simulations, we use 22 SPEC CPU2006 bench-
number of L3 ways. In total, the static-optimal version of marks (11 integer and 11 floating point), as shown in Ta-
MCR explores 512 § unique configurations. ble 2. We compiled the benchmarks on Alpha CPU emula-
While each cache’s access delay also changes across diffgsr. We run Debian Etch on it and used native Alpha com-
ent configurations, we assume a constant number of CPU cpiler, gcc-4.1.1. We compiled the benchmarks with optimiza
cles to access each cache chosen to handle that cache’s wofigih of -O2 option and linked glibc-2.5 statically. One inte
case access delaye(, with all ways enabled). ger benchmark (403.gcc) and six floating point benchmarks
Before resizing caches, we apply existing techniques to er416.gamess, 433.milc, 447.dealll, 450.soplex, 465iartd
sure the baseline cache hierarchy is reasonably efficient. 1481.wrf) could not be compiled, so they have been omitted
particular, we assume the L3 cache serializes tag and dateom our study.
accesses such that only a single data way is ever accessedsing the reference inputs, all of the benchmarks were
regardless of the number of configured cache ways. Due tan to completion on SimPointl[]. The second column
greater latency sensitivity, we perform parallel tags aathd in Table 2, labled “SPt,” reports the number of simulation
access in the L2 cache, though we serialize broadcasting thints that SimPoint identified (each simulation point con-
accessed data block in data array h-tree. Moreover, we agins 100M instructions). Then, we ran each benchmark’s
sume the ability to dynamically change the threhsold veltag simulation points on our modified Simplescalar simulatdt 51
for the L2 and L3 caches through body biasing. Specificallytimes, once for each of the 512 possible cache sizing configu-
we assume super highrdevices throughoutl’], but apply  rations, and measured the resultB?. The three columns
1This also avoids configuring the L3 cache with a single way8KIR) labeled “Static Optimal” in Tabl@ report the number of L1,

which makes several of the L2 configurations infeasible dutaé need to L_2- and L3 cache ways corresp_ondin_g to the Configuration
maintain inclusion. with the besED?. This is the static-optimal MCR configura-




Benchmark Static Optimal % % Sequential
SPt|| L1 | L2 | L3 | CPI | DRAM L1 | L2 | L3
Integer
400.perlbench 14 2 2 4 8% 4% 4 8 6
401.bzip2 21 2 3 16 2% 0% 2 4 16
429.mcf 27 2 2 16 0% 0% 2 2 16
445.gobmk 22 2 2 4 12% 6% 4 8 6
456.hmmer 19 4 3 |12 2% 3% 4 3 | 12
458.sjeng 16 2 1 4 8% 1% 4 8 4
462.libquantum || 17 1 1 4 0% 0% 1 2 4
464.h264ref 15 2 2 4 17% 12% 8 3 12
471.omnetpp 3 3 2 16 2% 0% 5 2 16
473.astar 21 2 2 12 4% 2% 2 3 12
483.xalancbmk || 20 2 2 6 9% 7% 2 8 8
Floating Point
410.bwaves 24 8 2 4 0% 0% 8 2 4
434.zeusmp 29 2 1 4 6% 7% 3 3 4
435.gromacs 20 1 1 4 3% 2% 2 2 4
436.cactusADM 6 2 2 4 3% 1% 3 2 4
437 .leslie 25 5 2 4 4% 4% 8 2 6
444 namd 23 1 1 4 7% 0% 6 2 4
453.povray 16 2 2 4 6% 0% 3 3 4
454 calculix 16 1 1 4 -1% 1% 2 2 4
459.GemsFDTD|| 22 3 3 4 3% 4% 4 4 6
470.lbm 14 2 1 4 0% 0% 2 4 6
482.sphinx3 19 2 1 4 3% 6% 3 2 4
|| Average || || 2.4 | 1.8 | 6.5 | 4.4%| 2.7% || 3.7 | 3.6 | 7.4 ||
Table 2: SPEC CPU2006 benchmarks used in the experiments. Co  lumns report number of simulation points, number of L1/L2/L 3
ways employed by static-optimal MCR, percent increase in CP I, percent increase in DRAM dynamic energy, and number

of L1/L2/L3 ways employed by sequential MCR.
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Figure 1: Breakdown of L1, L2, and L3 dynamic and static energ y for the SPEC CPU2006 benchmarks. The last 3 bars show the
average over the SPECint (first 11 bars), SPECfp (second 11 ba  rs), and all benchmarks.

tion. breakdowns for the SPECint benchmarks, the second 11 bars
_ show breakdowns for the SPECfp benchmarks, while the last
2.2. Evaluation 3 bars show breakdowns averaged across the integer and float-

_ _ . ing point benchmarks, labeled “SPECint” and “SPECfp,” and
Before presenting the MCR results, we first characterize ouhen across all the benchmarks, labeled “All.”

baseline cache hierarchy by showing the total energy dissip

tion across all of the caches. (Because our results later on Not surprisingly, the L1 cache’s high access frequency
will involve techniques that affect execution time, we ajwa leads to significant dynamic energy dissipation. In Figure
report energy rather than power consumption). In particulawe see L1 dynamic energy accounts for 22.1% of the total on-
Figurel breaks down the energy consumed in the L1, L2, ancthip cache energy averaged across all the benchmarks. When
L3 caches including both dynamic and static energy, labelethcluding static energy consumption, the L1 cache accounts
“L1 dynamic,” “L2 dynamic,” “L3 dynamic,” “L1 static,” “L2  for almost%rd of the total cache energy (31.7%). But this
static,” and “L3 static,” respectively. The first 11 bars who leaves a significant portion of the energy unaccounted for. |



fact, the most dominant component is the L3’s static energyacity. More importantly, notice this cache down-sizing is
accounting for 38.0% of the total on-chip cache energy orcomprehensive, occurring significantly acrasighree levels
average. Notice, the L3 is still a major consumer even afef cache In fact, Table2 shows static-optimal MCR chooses
ter applying aggressive ABB techniques to mitigate its leaka smaller number of ways than the baseline in every case ex-
age. Moreover, other sources of energy dissipation adness t cept three (the L3 cache for bzip2, mcf, and omnetpp).
cache hierarchy are significant as well. In particular, Fégu Because the entire cache hierarchy is consistently down-
shows the L2’s static energy contributes 19.2% on averagsized, static-optimal MCR targets every power source pdint
Even the L2 and L3's dynamic energy (6.3% and 5%, respe®ut in Figurel. Comparing the “All” bars in Figure$ and2,
tively) are non-trivial. These results show there is sigaffit ~we see the two major sources—L1 dynamic and L3 static—are
energy/power consumption across all of the caches. So, ageduced by 68% and 60% on average, respectively. L2 static
plying cache resizing teverycache in the multi-level hierar- energy is reduced even more, by 77%. And the L1 static and
chy has the best chance to achieve large power savings. L2 dynamic components are reduced by 68% and 49%, re-
Figure2 presents our MCR results. The bars labeled “SO'spectively. (Interestingly, L3 dynamic energy increasgs b
report the energy consumption of the static-optimal versio 48% due to multi-level interactions which we will discuss in
of MCR, which uses the cache-way configurations listed inthe next section.) These results emphasize the effectgene
Table2 (columns labeled “Static Optimal”). Each bar in Fig- of multi-level resizing in exploiting all opportunities fen-
ure2 is normalized to the corresponding application’s energyergy/power savings across a multi-level cache hierarchy.
consumption for the baseline cache hierarchy reportedgn Fi  Finally, we point out static-optimal MCR gains are asym-
ure 1 and is broken down into the same six components asnetric across datatype. As the “SPECfp” and “SPECint” bars
before. Results for the SPECint and SPECfp benchmarks afrom Figure 2 show, energy is reduced by 68.8% for the
pear in the top and bottom graphs of Fig@reespectively. floating point benchmarks compared to 50.7% for the integer
The static-optimal version of MCR achieves significant enbenchmarks. The SPECfp benchmarks exhibit less temporal
ergy savings. As the “All” bars in Figur@ show, static- locality compared to the SPECint benchmarks, so configur-
optimal MCR reduces energy dissipation by as much a$hg caches with large capacity tends to be wasteful. This
81.8% (libquantum), and by 58.9% on average across all ogncourages more aggressive cache down-sizing. The most
the benchmarks. Six benchmarks experience an energy reduttamatic example of this is for the L3 cache. On the base-
tion exceeding 70%. line cache hierarchy, L3 static energy is 38% higher for the
At the same time, static-optimal MCR does not degradeSPECfp benchmarks compared to the SPECint benchmarks
performance significantly. The sixth column of Talllela-  (see Figurel). But after applying static-optimal MCR, it be-
beled “% CPI,” reports the percentage increase in CPI foromes 37% lower (see Figue¢. The greater opportunity to
static-optimal MCR compared to the baseline cache hieyarchreduce cache capacity without impacting performancetesul
As Table2 shows, 14 of the 22 benchmarks incur less than 5% superior energy savings for the floating point benchmarks
performance degradation, with all but 2 benchmarks slowin , .
down by less than 10%. Averaged across all the benchmarl%%',s' Multi-L evel Interactions
static-optimal MCR degrades performance by only 4.4%.  As discussed in Sectidh cache resizing changes the balance
These performance degradations are due in part to an ibetween the power consumed by a cache and the power con-
creased L3 cache miss rate. Having more L3 misses not onlumption it inflicts on the next level of cache through itsteac
impacts performance, it also increases dynamic power comrisses. A significant challenge for MCRtis negotiate this
sumption in main memory. The seventh column of Tahle balance simultaneously across all resized caches
labeled “% DRAM,” reports the increase in dynamic energy More specifically, resizing decisions across caching kevel
incurred within DRAMs as a percentage of the total on-chipare coupled, a fact that MCR can exploit. When trying to pick
cache energy. As Tableshows, the energy increase in main a cache size at a particular caching level, MCR is not “stuck”
memory is only 2.7% of the total on-chip cache energy whermwith the access energy of a downstream cache. Instead, MCR
averaged across all the benchmarks. Even after accountingin down-size the downstream cache to reduce the cost of
for main memory effects, static-optimal MCR is still able to cache misses, thus enabling more aggressive down-sizing fo
provide a 56.2% reduction in energy consumption. Overallthe cache in question. MCR is also not a helpless bystanderin
our results show static-optimal MCR reduces energy signifiterms of the upstream cache’s incident reference stream. In
cantly at a minimal cost to performance. stead, MCR can up-size the upstream cache to reduce its miss
The large energy/power savings of static-optimal MCR aregrate, thus enabling more aggressive up-sizing for the cische
due to its aggressive down-sizing of caches. As the “Statiguestion, if desirable.
Optimal” columns in Table show, our technique employs  This section evaluates how important optimizing such inter
only 2.4, 1.8, and 6.5 cache ways on average (last row iache interactions is to the gains reported in Secién In
Table 2) for the L1, L2, and L3 caches, respectively. This particular, we compare static-optimal MCR—which by defi-
represents a 70%, 77.5%, and 59.4% reduction in cache caition achieves the best balance across all caching levels—
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Figure 2: Comparison of static-optimal and sequential MCR. Individual bars are broken down into L1, L2, and L3 dynamic an d

static energy. Top graph shows SPECint results while bottom graph shows SPECp results.

against a different technique that only achieves local bal- As in Section2.2, static-optimal versus sequential MCR
ance. In the alternate technique, we sequentially seaath eagains are also asymmetric across datatype, with a larger en-
caching level separately, allowing only that level to resiz ergy savings gap for the integer benchmarks. Figuskows
During each level's search, the other non-searched levelsequential MCR reduces energy consumption by only 34.5%
maintain their baseline capacities. Then, we combine the befor the SPECint behcmarks compared to 50.7% for static-
capacities foundi., achieving beseD?) from all per-level  optimal MCR-.e., static-optimal MCR saveérd more en-
searches into a single configuration. We call this techniquergy than sequential MCR for SPECint. As discussed in
“sequential MCR.” Sequential MCR still aggressively down-Section2.2, the SPECfp benchmarks exhibit low temporal
sizes individual caches, but it cannot optimize the coadin reuse, favoring aggressive down-sizing especially forthe
tion of resizing decisions between caching levels. On theache. This leaves very little room for multi-level intetiaos
other hand, sequential MCR requires searching fewer confige make a difference. In contrast, the SPECint benchmarks
urations to find its solution (more on this in a moment). make better use of the on-chip cache, so there is a largez rang
The last three columns in Tabfelabeled “Sequential,” re- Of “interesting” cache sizes. In this case, there is muchemor
port the number of L1, L2, and L3 cache ways used by se0om for coordinating cache resizing across levels to make a
quential MCR. As Table shows, sequential MCR employs bigger difference.
3.7, 3.6, and 7.4 cache ways on average (last row in Tble  Overall, Figure2 demonstrates MCR algorithms that con-
forthe L1, L2, and L3 caches, respectively. But as mentione@ider the interactions between different resizing denisio
earlier, static-optimal MCR employs only 2.4, 1.8, and 6.5can achieve significant additional energy/power savingsee
cache ways. So, static-optimal MCR down-sizes by an addFially for benchmarks with good locality characteristisit
tional 1.3, 1.8, and 0.9 cache ways on average compared g&jong with this opportunity comes a challenge: inter-caohe
sequential MCR. This represents a 16.3%, 22.5%, and 5.6¢gractions grow as the product of the number of per-cache con
further reduction in cache capacity for the L1, L2, and L3figurations. Thus, optimizing them involves complex search
caches, respectively. For example, in our study, sequential MCR requires consider
In Figure 2, the bars labeled “SE” plot the energy dissi- N9 o_nly 2_4 configurat_ions V\_/hile static-optimal MCR require
pation of the sequential version of MCR across our SPEc§Onsidering 512 configurations.
benchmarks. Comparing the SE and SO bars in Figuwee ; ;
see that sequential MCR does not achieve as much energ’y Dynamic MCR Techniques
savings compared to static-optimal MCR for almost everyHaving considered static off-line approaches, we now study
benchmark. In some cases, the energy savings gap is larglynamic MCR techniques. Dynamic MCR techniques deter-
For 5 benchmarks (perlbench, gobmk, sjeng, h264ref, anthine multi-level cache configurations at runtime. As such,
xalancbmk), static-optimal MCR achieves 25% or more enthey control cache resizing fully automaticaliye;, without
ergy savings compared to sequential MCR. For one bencloff-line profiling. In addition, they also have the abilitg t
mark (h264ref), the gap is 42%. Averaged across all of theadapt to time-varying application behavior.
benchmarks, sequential MCR reduces energy dissipation by To be successful, dynamic MCR must employ efficient al-
48.5% compared to the baseline, which is 10.4% worse thagorithms for determining the best cache configurationgmth
static-optimal MCR. wise, runtime overheads may outweigh the benefits of cache



resizing. The overhead issue is especially acute for dymamia good configuration fairly quickly, requiring 24 epochs for
MCR since it must determine cache sizes for multiple levelseach search phase. But as discussed in Segtigrthe se-
of cache, as opposed to previous techniques that explicitljuential strategy rarely finds the best configuration bexdus
control only a single level of cache. Worse yet, optimizingdoes not effectively optimize inter-cache interactions.
mter-cache Interactions, Wh'.Ch IS necessary 1o achieee th3.1.2. Proportional. The problem with the sequential strat-
best configurations, is combinatorially complex and has the

: : . egy is that it holds the non-searched caches at their baselin
potential to drastically increase overheads (see Segtign . . .
capacities. For most programs, the baseline capacities are

Thlsl\jce:%tlog pr_e%erizs sev_EraI runhtlr_ne algﬁnthms Ifor_dyfoo large. Hence, the sequential per-level searches find the
namic - Sectiors. 1describes techniques that employ in-y . ; capacities given the rest of the cache hierarchy is over

telligent search to find the best configurations rapidly. i he grovisioned but this is usually not the global optimum
r ' '

Section3.2introduces techniques that use reuse distance p “We try to improve upon the sequential strategy in two

filing to predict the best configuration outright. We discuss : - . .
S : . .o -ways. First, after finding the best capacity for a particular

each technique’s runtime overhead, as well as its ability to ; ; . .
caching level, we set that level to its best capacity durirg s

achieve the optimal cache configuration, before conductin%e i h t the other levels. Thi id
experiments later in Sectioh quent searches at the other levels. is provides a more
optimized cache hierarchy for the later searches, respiltin
3.1. Search better choices down the line. Moreover, we start searching f
the L1, then for the L2, and finally for the L3, so the caches
Search techniques directly measure different cache camafigu are fixed in smallest to largest cache order. From our experi-
tions’ performance and power consumption to find the besence, this produces the best results.
one. Sectior? performed exhaustive search across multiple Second, when searching a particular caching level, we re-
program runs. For dynamic MCR, however, the search prosize the non-fixed levels.é., the higher-capacity caches) in
cess occurs during the production run itself, so only a singl proportion to the level being searched. In other words, when
run of the program is available. Moreover, because most comesizing the L1, the L2 uses the same number of ways as
figurations are sub-optimal, search slows down the progranthe L1. And when resizing the L2, the L3 uses twice the
introducing runtime overhead. Hence, it is crucial for #1es number of ways as the L2. This tends to provide more op-
techniques to minimize the amount of time spent searching.timized cache capacities downstream in the non-fixed levels
Rather than search exhaustively, we investigate differeriVe call the search technique with both of these improvements
strategies for intelligently picking the configurationgtpso  the “proportional” strategy.
that the optimal configuration (or at least a very good one) is Like sequential, the proportional strategy also completes
found quickly. The search process can be repeated periodir 24 epochs, but it finds the optimal configuration more fre-
cally to increase the likelihood of finding high-quality sel quently due to its better search strategy. However, propor-
tions. This can also track time-varying application bebavi  tional can still miss the best configurations. While it pdrs
To implement search on-line, we divide a program’s exebetter “context” for the per-level searches, there arersihy
cution into short time intervals, callegpochsand try differ-  configurations that are impossible to search. Again, this li
ent cache configurations across different epochs. For all dfs the ability to fully optimize inter-cache interactions
our techniques, we assume a fixed epoch size of 1M |.nstru%-.1'3. Hill-Climbing. Our last search strategy is hill-
tions. After search completes, the cache hierarchy is con;

figured with the best configuration found, and the progranf“mbmg' In this approach, search phases begin by trying

is allowed to execute with this configuration. When search-_ "~
: . " " aching level-4 ways of L1, 4 ways of L2, and 8 ways of
ing repetitively, we alternate between “search phases” an 3—and setting this to be the “current-best” configuration.

“execute phases” until program termination. The number o “ Y . . .
. hen, we try “nearby” configurations that differ by one cache
epochs spent in execute versus search phases can be tuned to . : . ; X
S way. In particular, we try six configurations, each adding
trade off overhead for adaptivity. . i
or subtracting a single cache way to or from the current-
3.1.1. Sequential. We consider three different search strate-best's L1, L2, or L3. Among these trials, we identify the
gies. The first is a dynamic version of the off-line sequéntiaone with largesED?. If this “best-neighbor” is better than
MCR technique from SectioB.2. As in Section2.2, we se- current-best, we set current-best to best-neighbor arehtep
guentially search each caching level, trying all capagitie  the search across neighbors from the new current-best eonfig
each level while holding the non-searched levels at theseba uration. This process continues until no neighbor improves
line capacities. We then combine the best capacities foundn current-best, at which time the search phase completes.
from the per-level searches into a single configuration. The |n contrastto sequential and proportional, the hill-clingp
only difference is that we try each capacity for only a singlestrategy can reach any configuration in the search space, so i
epoch instead of the entire program run. can potentially find the optimum everytime. However, hill-
The advantage of the sequential strategy is that it findglimbing’s movement towards the optimal configuration may

he configuration with half the maximum capacity at each



be obstructed by local optima and/or noisy dynamic behaviocomprehensive technique since it can exhaustively evaluat
across epochs. inter-cache interactions.

Whereas sequential and proportional always finish after .
24 epochs, hill-climbing’s latency is application depemde 4- Dynamic MCR Results
Hill-climbing is generally more expensive because it move
slowly, requiring six epochs to learn the direction of lage
ED? increase. On the other hand, because sampling sta
from the “average” configuration, hill-climbing begins sk
to all solutions. For optimal configurations that are near th 4.1. Implementation
average configuration, hill-climbing can exhibit even lowe

SThis section evaluates the dynamic MCR techniques intro-
duced in Sectior8. We first discuss implementation issues.
rjﬁ1en, we present the on-line performance and power results.

runtime overhead than sequential or proportional. We implemented our dynamic MCR techniques in the simu-
lator from Sectior2.1 In particular, we modified our simu-
3.2. Prediction lator to distinguish between search/profiling phases aed ex

In addition to search, we also consider prediction-baselt te cut(_a phases. During s_earch or p_roﬂhng, our simulator posts
an interrupt every 1M instructionse., every epoch—and ex-

nigues. These techniques predict the behavior of differe . .
- . . ) . ) ecutes an interrupt handler. (This occurs for as many epochs
cache sizing configurations via reuse distance profiles thu

eliminating search overhead. Our approach relie as needed to complete the search or profiling phase). We also
9 . L P SVaY  modified the simulator to allow software to reconfigure its
counters[27]. In this technique, a separate counter is im-

. . caches. For the search-based techniques, the interrupt han
plemented per cache way, each representing a differerit sta : . .
. 4 lers implement one of the search strategies from Se@tign
position across the cache sets. On a cache hit, the stadk dep

of the hitting cache block is identified, and the correspond[ecOmclglurlng the cache across epochs to try different cache

ing way counter is incremented. Hence, each way counteii]zmg configurations. After each epoch, the interrupt hend
; o ’ easures the performance and power consumed for the previ-
tracks the number of hits attributable to cache blocks at P b P

. o - us configuration before trying the next configuration.
particular stack depth, permitting prediction of the numbe Performance and power measurements are provided by
of additional misses that would occur as cache capacity iﬁ

. : Oardware performance counters in the simulator. In particu
reduced in way increments. Way counters have been usg

. o . ar, each interrupt handler reads a cycle counter to measure
extensively to partition shared caches for multiprogramime , S .
workloads [ | an epoch’s execution time. We also implemented cache ac-

S . cess and cache miss counters for each caching level. Usin
We adapt way counters for dynamic MCR. In particular, we 9 9

. : : [per-access energies from CACTI and the cache access counts,
extend all three caches in our cache hierarchy with way cou Ihe interrupt handler can compute an epoch’s dvnamic ener
ters. We also replace the search phases from Segtionith P P P y o

*orofiling phases” During a profiling phase, we configure consumption. And using per-cycle leakage currents from

. . ; . g CACTI and cycle counts, the interrupt handler can compute
all caches with their maximum capacity, thus acquiring way.

: - . an epoch'’s static energy consumption. Together, these mea-
counts (and cache-miss predictions) for every possiblacap . 5 ' i
. : : . . surements yieldE D= values for each searched configuration.
ity at each caching level. Since all capacities are profiled s

- . To facilitate prediction, our simulator implements way
multaneously, profiling phases can be short. When prOfIIIngcounters at each caching levebhich the interrupt handler
on-line, each profiling phase lasts for three epochs.

At the end of each profiling phase, we perform predic_can also read. At the end of each profiling phase, the inter-

tion. Because way counters can predict cache misses erert handler predict&D? for all possible cache sizing con-

) . y an p . ?igurations, as described in Sectidr. Energy is computed
every capacity, we can exhaustively predict per-level each in the same way as for the search-based techniques, except
miss counts for all combinations of capacities across treeth ’

caching levelsie., 512 configurations. After predicting each the cache access and miss counts are predicted from the way

. . . : counts rather than being measured. Performance is computed
configuration’s cache-miss counts, we then predict perfor:

. N by using the predicted cache miss counts at each cachirlg leve
mance and power consumption. (Sectiotwill discuss how to derive the average memory access time, which is then used
this is done). This yields aBD? prediction for each cache 9 y !

o . . S s to compute CPI assuming a single-issue in-order processor—
sizing configuration, allowing identification of the bestheo . . ; o
. . i.e, CPk,_orger- TO estimate the impact of ILP exploitation
figuration. . i
Although reuse distance profiling avoids search overhead.. actual CPI, we measure the ratio Gtk / CPin—order In
. 19 . P 9 - revious profiling phases, and apply the same ratio to derive
it does incur runtime overhead to compute the prediction )
- . . ) o Plactual for the current profiling phase.
In addition, reuse distance profiling may incur prediction e : . .
Our simulator accounts for the overheads associated with

ror, especially since it cannot directly measure perforcean - .
: . . resizing each cache. When up-sizing, we assume 1000 cycles
Lastly, the technique consumes slightly more power during

profiling phases due to t_he additio_n of way Cognte_rs- On the 2Although negligible, the way counters’ power consumpt®adcounted
other hand, prediction via reuse distance profiles is the mosor during the profiling phases by our simulator.
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Figure 3: Comparison of sequential, proportional, hill cli mbing, and RD-based prediction. Individual bars are broken down into
L1, L2, and L3 dynamic and static energy. Top graph shows SPEC int results while bottom graph shows SPECfp results.

to power up each way, and 10 cycles per way to flash invalin Figure 2. Averages over different datatypes are labeled
date the newly powered-on cache blocks. When down-sizinSPECint” and “SPECfp” while averages over all benchmarks
we walk the down-sized way(s) to flush the contents. Clearare labeled “All.”
cache blocks are discarded after checking upstream cachesThese results demonstrate our dynamic MCR techniques
to maintain inclusion. Dirty cache blocks check upstreamcan provide significant energy savings compared to the base-
caches and are also written back to the next-lower level. Wine cache hierarchy. As the “All" bars in Figur@ show,
assume these operations are piplined such that flushing takelynamic MCR provides between 40% energy savings when
1 cycle per walked cache block. Down-sized ways are saising the sequential strategy to as much as 62% energy sav-
lected in reverse way ID order. Because we do not physicalljhgs when using the reuse distance-based predictiongyrate
move cache blocks once they are filled, the flushed cachaveraged across all of the SPEC benchmarks. In addition,
blocks have an equal probability of being at any position incomparing these results to FiguPe we see our dynamic
the LRU stack. Moreover, we do not attempt to reconstrucMCR techniques achieve the potential energy savings that
the per-set LRU stacks after flushing. Resizing is performeaff-line techniques provide. Specifically, the on-line sien
onthe L1, then the L2, and lastly the L3 cache. of sequential MCR loses only 9% of the off-line sequential
To drive our experiments, we use the SPEC CPU200®CR savings (40% vs. 49%), and the best dynamic MCR
benchmarks from Tabl2 In particular, we use the same sim- technique, reuse distance-based prediction, actualigeeh
ulation points as reported in Table except we extend each slightly more savings than the static-optimal MCR savings
one from 100M instructions to 500M instructions. Finallgw (62% vs. 58.9%). This is impressive considering dynamic
allow each dynamic MCR technique to perform four cacheMCR incurs runtime overhead to find the best configurations
resizings i.e., we run four search/profiling phases each fol-and to resize caches.
lowed by an execute phase) per 500M instruction simulation Figure 3 also illustrates the benefits of our intelligent
point. search and prediction techniques. As the “P” bars in the “All
42 Results category show, the proportional strategy provides 51%gner
o savings, which is an additional 11% more than the sequential
Figure 3 presents our dynamic MCR results. This figure strategy. In fact, comparing the “P” and “S” bars across all
shows the energy consumption in the cache hierarchy for dithe benchmarks, we see proportional is better than seailienti
ferent dynamic MCR techniques in a format similar to Fig-in 18 of the 22 benchmarks. This shows proportional’s ap-
ure2. The bars labeled “S,” “P,” and “H” report total energy proach in providing better contexts for the per-level skasc
consumption for the sequential, proportional, and hilintli ~ compared to sequential can make a significant difference.
ing search techniques, respectively, while the bars labele Looking at the “H” bars in the “All” category of Figurs,
“R” report total energy consumption for the reuse distancewe see the hill climbing strategy is comparable to the propor
based prediction technique. Each bar in FigBiie normal- tional strategy, also providing an energy savings of 51%. As
ized to the corresponding application’s energy consumptio mentioned earlier, hill-climbing can exhibit long searthés
for the baseline cache hierarchy, and is broken down into thand can get stuck on its way to the optimum. We found the lat-
same dynamic/static components for the L1, L2, and L3 ager to be especially true for the SPECfp benchmarks. In this



% CPI % DRAM

S | P | H | R S | P | H | R

SPECint Benchmarks

400.perlbench 17.6% | 25.9% | 23.2% | 14.5% 14% 15.1% | 14.1% | 5.3%
401.bzip2 19.7% | 42.2% | 21.2% | 25.6% || 17.5% | 36.8% | 19.8% | 19.9%
429.mcf 2.5% 3.4% 9.6% 3% 4.6% 5% 15% 3.5%
445.gobmk 8.9% 9.7% 9.1% | 12.2% 6.5% 7.1% 2% 3.2%
456.hmmer 7.7% | 12.3% | 9.3% | 17.2% || 17.8% | 26.7% | 22.8% | 16%
458.sjeng 3.9% | 14.1% | 5.6% 8.1% 2.1% 3.6% | -0.5% | 0.6%
462.libguantum 1.3% 0% 0% 0% 15% | -5.7% | -1.4% | -0.3%
464.h264ref 12.8% | 27.4% | 14.4% | 23.3% || 11.1% | 16.8% | 9.5% | 10.1%
471.omnetpp 10.7% | 12.7% | 16.1% | 10.4% || 22.8% | 14% 20.3% | 11.5%
473.astar 7% 9% 11.5% | 1.7% 10.1% | 22.5% | 16.6% | -4.1%

483.xalancbmk || 7.3% | 18.7% | 6% 16.5% || 7.5% | 18.6% | 4.1% | 13.4%
SPECfp Benchmarks

410.bwaves 31% | 4.6% | 51% | 5% 2% | 0% | 15% | 0.3%
434.zeusmp 3.3% | 85% | 3.5% | 6.1% || 5.1% | 7.9% | 2.5% | 4.8%
435.gromacs 3.3% | 11.3% | 1.4% | 2.1% || 4.4% | 14.6% | 1.3% | 1.1%
436.cactusADM || 6.1% | 10.4% | 3.5% | 6.5% || 6.4% | 2% | 0.6% | 0.9%
437 leslie 45% | 93% | 4% | 13.8% | 4.7% | 1.7% | 05% | 2.5%
444.namd 45% | 93% | 3.4% | 6.4% || 3.8% | 4.3% | 0.9% | 0.5%
453.povray 10.1% | 10.1% | 4.9% | 10.7% | 7% | 4.8% | 0.8% | 0.2%
454.calculix 0% | 0% | 0% | 0% | 28% | 0.7% | 0.6% | 0.1%
459.GemsFDTD|| 2.9% | 7.9% | 1.5% | 182% || 3% | 2.3% | 0% | 3.5%
470.Ibm 0.2% | 0.1% | 0% | 2.6% || 1.2% | -1% | -3.6% | -0.4%
482.sphinx3 1.9% | 35% | 1.6% | 3.2% || 2.9% | 44% | 4% | 6.2%
T Avg [ 6% | 12% | 7% | 9% || 7% | 9% | 6% | 4% |

Table 3: Dynamic MCR performance and DRAM energy results. “% CPI” and “% DRAM” columns report % increase in CPI and
DRAM dynamic energy, respectively.

case, hill climbing is actuallyvorsethan proportional. But Table2, the performance degradation for static-optimal MCR
for the SPECint benchmarks where there is a greater potentiag only 4.4%. So, these dynamic MCR techniques pay an ad-
for optimizing inter-cache interactions (see Secto®), the  ditional 1.6—4.6% performance loss on average for their run
increased flexibility of hill climbing’s search strategyme time overheads. Unfortunately, the proportional strateay
pared to proportional results in noticeable benefits. As theoticeably higher performance degradation, 12%. Although
“SPECint” bars in Figur@& show, hill-climbing provides 5.5% proportional only runs 24 epochs to complete each search
more energy savings than proportional. phase, many of the searched configurations have very poor
While the benefits of optimizing inter-cache interactioms i Performance. In particular, proportional scans the L3 each
apparent in hill climbing, it is most visible for reuse diste- When searching for the best L1 and L2 capacities, so it often
based prediction. Comparing the “R” and “P” bars in the “All” Uns ywth very high L3 miss rates which impact performance
category of Figuré, we see prediction provides 11.1% more Significantly.
energy savings than proportional search; and comparing the
“R"” and “H" bars in the “All” category, we see prediction pro-

vides a similar 11.4% more energy savings than hill climbing Finally, the columns in Tabl& under “% DRAM” report
search. As discussed in Secti®n, reuse distance-based pre- he increase in dynamic energy incurred within DRAMs as a
diction exhaustively considers all sizing configuratiomte percentage of the total on-chip cache energy. (Again the “S,
results in Figure3 show such comprehensive evaluation canp» “H» and “R” columns refer to our four dynamic MCR
provide increased energy savings through better optimizat techniques). These results show off-chip memory consumes
of inter-cache interactions. between 4-9% more energy due to increased misses from L3

The columns in Tablé& labeled “S,” “P,” “H,” and “R” un-  cache down-sizing. Again, these are larger than the static-
der “% CPI” report the percentage increase in CPI for theoptimal MCR results (2.7% in Tablg&) and represent the
sequential, proportional, hill climbing, and reuse disen lower-quality cache sizing decisions that are made dynami-
based prediction techniques, respectively. Averagedsaaid  cally as compared to an omniscient off-line technique. Keve
the benchmarks, the performance degradation for sequentitheless, the DRAM energy increases are still relativelylsma
hill climbing, and prediction is between 6—9%. As shown in compared to the overall on-chip cache energy reductions.
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5. Related Work MCR, cache partitioning also employs reuse distance psofile
to drive allocation decisions. But cache partitioning isar-
A large body of work exists on cache resizing. Selectiveizontal” allocation technique compared to MCR which is a
cache ways 1] uses off-line profiling to drive disabling of «yertical” allocation technique. While both can save power
cache ways for dynamic power savings. DRI caches {3, cache partitioning does so by optimizing utility across eom
] use cache-miss counts to detect over-provisioning, and rgeting threads whereas MCR does so by optimizing balance
size across either cache sets or ways. In addition, DRI sachgetween caching levels.
also gate the power supply to unused portions of cache, con- Finally, significant research has explored circuit-leeeht-
serving both dynamic and static power. Maddml[15] pro-  niques for reducing a cache’s static power consumption.
pose resizing L2 caches by dynamically extending their cayylti-\4 techniques], 14] employ low\; devices along crit-
pacity into stacked DRAM. Malilet al [19] study selective jcal paths and high devices along non-critical paths to save
ways in the MCore CPU. All of these prior studies ConSiderpower while still maintaining performance_ Gate@ﬁ/[ ]
reSiZing a Single level of cache Only whereas MCR addressqﬁ;es h|gh‘/t devices to gate the power Suppiy to unused por-
the problem of resizing multiple levels of cache. In pat¢u  tions of cache. Adaptive body biasd, 27] controls the back-
we develop novel algorithms for navigating the much largergate voltage to place devices in a standby low-leakage mode
configuration space in the multi-level case to efficientlylfin \when not in use, but then restores the devices to an active
the best configurations. high-performance mode when the cache is accessed. Lastly,
Balasubramoniaat al[3, 4] propose resizing two levels of dynamic voltage scaling3[ 15] can similarly transition be-
cache, either the L1/L2 or the L2/L3, by partitioning a com-tween standby and active modes by scaling the supply voltage
mon pool of SRAM arrays to different caching levels. Be-Similar to other cache resizing techniqués,[37], MCR re-
cause partitionings always utilize all of the available 3RA lies on Gated-¥p to essentially eliminate leakage for unused
only one cache’s size is controlled independently. Hente, i portions of the cache.
this technique, it is impossible to optimize the balancenpoi ) .
of different caching levels simultaneously as is done in MCR6- Multicore Integration

Besides resizing, researchers have studied other adaptixfCR allocates resources “vertically” across differentdag
cache techniques as well. Drops#ical [ 7] proposeaccount-  |evels within a cache hierarchy. In this paper, we have fedus
ing cachesvhich divide a cache’s ways into primary and sec-g, resijzing the caches underneath a single core only in order
ondary groups. Each cache access searches the two groygsstudy the main effects. But MCR can also be integrated
sequentially, accessing the secondary only on a primary.misinto multicore CPUs as well. The multicore cache hierarchy
This saves power if secondary accesses are infrequentgZhagyith the most natural fit to MCR is one in which all caches
et al[35] proposeway concatenatiowhich permits flexible  are private. In this case, MCR can be applied to each “ver-
organization of cache banks to form direct-mapped, 2-way, otica| slice” of the chip’s cache system. The cache coherence
4-way set-associative caches. Neither accounting cadves nprotocol, which would most likely maintain coherence asros
way concatenation address capacity allocation acrossrdiff the private last-level caches (LLCs), would need to be aware
ent levels of cache, the main focus of MCR. of cache resizing and only track cache blocks within active

Silva-Filho et al [2€] and Gordon-Rosgt al [9] study  ways of each private LLC. But the sizing control for diffeten
design-time techniques for optimizing 2-level cache hiera cores’ caches would not need to coordinate.
chies. This body of work tries to find the best block size and Most multicore CPUs today, however, employ shared
associativity—as well as cache capacity—for two caching le LLCs. Integrating MCR into a processor with a shared LLC
els. They consider a more complex design space than we dg, also easy if the CPU employs cache partitioning. As dis-
and employ more costly search techniques that are suitablgissed in SectioB, cache partitioning horizontally allocates
for design analysis only. In contrast, MCR is an architestur portions of a shared cache to cores, providing each core with
level power management technique. It solves a more coome number of cache ways. MCR can be appditer the
strained problem, but provides algorithms suitable for-runpartitioner makes its partitioning decision. Then, allttisa
time use. Similarly, Zhang and Vahi4] search for the best needed is for the partitioner to inform MCR how many ways
cache architecture using a reconfigurable hardware phatfor of the shared LLC it can resize up to. In that case, again there
But they only consider optimizing a single level of cache.  would be no interaction between MCR sizing control for dif-

Cache partitioning explicitly allocates shared cachesxro ferent cores.
multiprogrammed workloads, providing cache to those pro- An interesting question is whether cache partitioning doul
grams that can best utilize it. The majority of techniquesbe more effective if its horizontal allocation decisionsrave
focus on performanced| 24, 16, 27, 28, 31]. More re- coupled with MCR'’s vertical allocation decisions. For exam
cently, techniques have also tried to reduce power consumpte, if the partitioner knew that a program running on a par-
tion [11, 29 by withholding allocation and shutting down ticular core could more aggressively down-size its upstrea
portions of the shared cache, similar to cache resizinge Lik caches given a smaller number of ways in the shared LLC, it
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might try to allocate more ways to other cores. Such “global’[14]
optimization that considers horizontal and vertical adban
interactions may ultimately provide the best power efficien
Exploring such issues is a natural direction for future work (1]

7. Conclusion

This paper presents MCR, an architecture-level power man[16]

agement technique that resizes all caches in a modern cache
hierarchy simultaneously. Our work shows a static-optimal -
version of MCR applied to a 3-level cache hierarchy can re-
duce total energy dissipation by 58.9% while degrading per-
formance by only 4.4% across 22 SPEC CPU2006 bench-
marks. We find a non-trivial portion of this gaiérd for the
SPECint benchmarks—comes from optimizing inter-cache in 8l
teractions. Our work also proposes several dynamic MCR
techniques that can find the best sizing configurations at run
time. We show dynamic MCR can achieve between 40-62%19)
energy savings while degrading performance by 7-9%.
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