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Abstract
Hardware designers are constantly looking for ways to

squeeze waste out of architectures to achieve better power ef-
ficiency. Cache resizing is a technique that can remove waste-
ful power consumption in caches. The idea is to determine
the minimum cache a program needs to run at near-peak per-
formance, and then reconfigure the cache to implement this
efficient capacity. While there has been significant previous
work on cache resizing, existing techniques have focused on
controlling resizing for a single level of cache only. This sac-
rifices significant opportunities for power savings in modern
CPU hierarchies which routinely employ 3 levels of cache.

This paper investigatesmulti-level cache resizing(MCR).
MCR independently resizes all caches in a modern cache hi-
erarchy to minimize dynamic and static power consumption
at all caching levels simultaneously. Specifically, we study
a static-optimal version of MCR, and find resizing a 3-level
hierarchy can reduce total energy dissipation by 58.9% with
only 4.4% degradation in performance. Our study shows a
non-trivial portion of this gain–13rd for programs exhibiting
good temporal locality–comes from optimizing the interac-
tions between resizing decisions at different caching levels.
We also propose several dynamic resizing algorithms that can
automatically find good size configurations at runtime. Our
results show dynamic MCR can achieve between 40–62% en-
ergy savings with slightly higher performance degradation
than static-optimal MCR.

1. Introduction

The power wall is currently the main limiter to achieving high
performance in modern CPUs, and has been one of the most
critical problems facing computer architects over the pastsev-
eral years [17]. Unfortunately, this problem will only get
worse in the future as process technologies continue to scale
to smaller feature sizes. As such, power efficiency will re-
main an extremely important design goal, and will require
hardware designers to continue efforts to squeeze wasteful
power consumption out of architectures.

A key place to look for power savings is in the on-chip
cache hierarchy. Caches occupy a large portion of the CPU’s
available die area–upwards of 50% in today’s CPUs–so they
contribute significantly to a processor’s overall power dissi-
pation. In addition, caches are sized for the worst case. This
means an average computation cannot effectively utilize all of
the cache capacity. Such cache over-provisioning can result

in significant waste that, if eliminated, can yield large power
savings without sacrificing much performance.

Several researchers have investigatedcache resizing tech-
niques[1, 3, 4, 18, 19, 23, 32, 33] to target this form of
waste. Cache resizing is an architecture-level power man-
agement technique that determines the minimum cache a pro-
gram needs to run at near-peak performance, and then recon-
figures the cache by enabling/disabling cache ways or sets
to implement this efficient capacity. Resizing can reduce the
amount of cache activated per access, and also enables circuit-
level techniques (i.e., gated-Vdd [23]) to shut down unused
portions of the cache. This can translate into significant dy-
namic and static power savings. At the same time, though,
resizing can also increase a cache’s miss rate, resulting in
greater power dissipation for the next level of cache (and de-
graded overall performance). Thus, techniques must finessea
balance between these conflicting factors in order to achieve
a net power efficiency gain.

Although there has been significant work on cache resizing,
existing techniques are limited in their optimization scope.
In particular, most studies consider resizing a single level of
cache only [1, 18, 19, 23, 32, 33], typically the L1 cache. In
Balasubramonian’s work [3, 4], two levels of cache are re-
sized, but not independently (the sum of the two cache sizes
is fixed). So, there’s still only one cache whose size is explic-
itly controlled.

The trend for modern CPUs is towards deeper cache hier-
archies, however, which distributes the power consumption
across many caching levels. Today, three levels of cache is
commonplace. For dynamic power consumption, the L1 is
the greatest culprit, but the L2 and L3 can also consume non-
negligible dynamic power, especially for memory-intensive
workloads. For static power consumption, the L3 is by far the
greatest concern due to its large area. But non-trivial static
power can also be dissipated in the L2 as well. By only con-
trolling the size of a single level of cache, existing techniques
potentially miss significant opportunities for power savings.

The current lack of comprehensive cache resizing is partly
due to the availability of other power management options,
especially for caches below the L1. Because these caches are
only referenced on an L1 miss, CPU performance is some-
what insensitive to their actual delay. Hence, it is feasible
to trade off delay for power in the post-L1 caches. This has
been exploited extensively by circuit-level techniques tomit-
igate static power consumption. In particular, multiple Vt de-



vices [2, 14], adaptive body bias (ABB) [13, 22], and dynamic
voltage scaling (DVS) [8, 15] all convert modest increases in
cache access latency into significant static power reductions.

While extremely effective, circuit-level techniques for mit-
igating static power do not obviate the need for architectural
approaches like cache resizing. Circuit mitigation onlyre-
ducesleakage current. In contrast, cache resizing (plus power
gating) can suppress leakage practically to zero for the gated
portions of cache. Moreover, circuit- and architecture-level
approaches are orthogonal. So, applying them in concert may
ultimately yield the greatest static power savings.

In addition to flexibility for reducing static power, the low
latency sensitivity of post-L1 caches also offer alternatives
for reducing dynamic power. For example, serializing tag
and data access ensures only a single data way is energized
regardless of the number of total active ways, thus reducing
dynamic power at the expense of some increased delay. But
again, this does not preclude cache resizing. A serial cache
still incurs wasteful tag energy as well as significant intercon-
nect energy that resizing can address. And in some cases,
serial caches may be too slow–for example, at the L2 given
an L1 with a high miss rate–limiting their application.

This paper investigatesmulti-level cache resizing(MCR).
MCR independently resizes all caches in a multi-level cache
hierarchy–using selective cache ways [1] as the resizing
mechanism–to minimize power consumption at all caching
levels simultaneously. Our work quantifies the potential
power benefits of MCR, providing insights into where savings
come from as well as the challenges that must be overcome
in order to attain the full benefits. We also investigate con-
trolling MCR. Cache hierarchies with multiple reconfigurable
caches exhibit a large number of sizing configurations. Our
work develops techniques to navigate this complex search
space to quickly find the best configurations. Currently, our
focus is on the cache hierarchy beneath a single core–i.e., one
“vertical slice” of a multicore cache system. While we show
how MCR can be integrated into multicores, evaluating MCR
in a multicore CPU is beyond the scope of this paper. More
specifically, we make the following contributions.

First, we study static resizing algorithms to quantify the po-
tential benefits of our approach. Our study presents a static-
optimal version of MCR that uses exhaustive off-line search
to find the best sizing configuration. We apply static-optimal
MCR to a 3-level reconfigurable cache hierarchy that can sup-
port 512 unique sizing configurations. (Our cache hierarchy
also employs serial access and ABB to provide an efficient
baseline). We find static-optimal MCR can reduce total cache
energy dissipation by 58.9% while degrading performance by
only 4.4% across 22 SPEC CPU2006 benchmarks. Moreover,
our results show every caching level contributes significantly
to the overall savings, underscoring the importance of resiz-
ing all the caches in a multi-level hierarchy.

Second, we show that finding the optimal configuration re-
quires considering the interactions between resizing decisions

across different caching levels. As mentioned earlier, cache
resizing balances the power consumed by a cache against
the power consumption it inflicts on the next level of cache
through its cache misses. Notice, a cache’s balance point de-
pends on both the upstream and downstream caches (if any),
which in MCR are themselves resizable. Thus, the optimal
MCR configuration is the one that achieves balanceglobally
across all the caches at the same time.

To quantify the impact of optimizing such inter-cache in-
teractions, we compare static-optimal MCR against an algo-
rithm that only achieves “local balance,” which we callse-
quential MCR. We find static-optimal MCR reduces energy
by 10.4% more than sequential MCR across all the SPEC
benchmarks. But for the SPECint benchmarks which ex-
hibit good temporal locality, static-optimal MCR saves1

3rd
more energy as compared to sequential MCR. So, while MCR
provides significant overall power benefits, a non-trivial por-
tion comes from optimizing inter-cache interactions, which is
complex because the interactions grow as theproductof the
number of per-cache configurations.

Third, we study dynamic resizing algorithms to enable
MCR at runtime. Our dynamic MCR work addresses the run-
time overheads associated with finding the best cache sizing
configurations for multiple levels of cache using intelligent
search and prediction-based techniques. In particular, wepro-
pose using proportional sizing of non-searched levels to pro-
vide an optimized context for per-level searches. We also pro-
pose using hill-climbing to guide search, enabling search of
any configuration. Lastly, we propose predicting the best con-
figuration from reuse distance profiles acquired via way coun-
ters [27]. We call these techniquesproportional, hill climbing,
andreuse distance-based prediction, respectively.

Our results show dynamic MCR techniques are quite ef-
fective, providing between 40% and 62% energy savings on
average. Reuse distance-based prediction provides the most
energy savings, with hill climbing also providing good energy
savings for the SPECint benchmarks, due to the ability to ef-
fectively optimize inter-cache interactions. We also showhill
climbing and reuse distance-based prediction incur more per-
formance degradation than static-optimal MCR, 7% and 9%,
respectively, due to runtime overheads. Unfortunately, the
proportional search strategy incurs a 12% performance loss
because it often tries very poor configurations.

The remainder of this paper is organized as follows. Sec-
tion 2 studies static-optimal MCR, and how inter-cache resiz-
ing decisions interact. Then, Section3 presents several dy-
namic MCR techniques, and Section4 evaluates their power
benefits and performance. Finally, Section5 discusses related
work, Section6 addresses multicore issues, and Section7con-
cludes the paper.

2. Static-Optimal MCR

In this section, we study a static-optimal version of MCR to
illustrate the potential gains of multi-level resizing andto pro-
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vide insights into the interactions between different caching
levels. The latter will motivate the potential complexity of
controlling MCR, which is relevant for our dynamic MCR
techniques presented in Section3. Our discussion proceeds in
three parts. We begin by describing the experimental method-
ology. Then, we present our static-optimal results. Lastly, we
address multi-level interactions.

2.1. Experimental Methodology

We use the Simplescalar tools for the Alpha ISA [5] to con-
duct our study. In particular, we model a single out-of-order
core attached to a 3-level cache hierarchy consisting of a split
8-way 32KB L1 cache, a unified 8-way 256KB L2 cache, and
a unified 16-way 2MB L3 cache. (These cache sizes were
chosen to match typical capacity-per-core found in today’s
CPUs). The cache block size is 64 bytes for all three caches,
and the L2 and L3 caches maintain inclusion. Table1 lists the
detailed parameters for the core and cache hierarchy used in
our experiments.

To enable cache reconfiguration, we modified Sim-
plescalar’s cache module to model way selection [1]. We as-
sume all caches in the hierarchy, except for the L1 I-cache, are
reconfigurable and can change their capacity in increments of
a cache way from 1 to the associativity number of ways in the
cache. (Our work does not consider I-cache resizing, and as-
sumes the I-cache is always fixed). Hence, for our hierarchy,
there are 8, 8, and 16 different configurations for the L1, L2,
and L3 caches, respectively.In the static-optimal version of
MCR, we try all possible permutations of the per-cache con-
figurations to identify the one that is most power-efficient. We
use energy× delay-squared to quantify power efficiency. (By
emphasizing delay,ED2 ensures that optimizing for power
does not sacrifice performance too much). To limit the num-
ber of simulations, we only try configurations with an even
number of L3 ways.1 In total, the static-optimal version of
MCR explores 512 (83) unique configurations.

While each cache’s access delay also changes across differ-
ent configurations, we assume a constant number of CPU cy-
cles to access each cache chosen to handle that cache’s worst-
case access delay (i.e., with all ways enabled).

Before resizing caches, we apply existing techniques to en-
sure the baseline cache hierarchy is reasonably efficient. In
particular, we assume the L3 cache serializes tag and data
accesses such that only a single data way is ever accessed
regardless of the number of configured cache ways. Due to
greater latency sensitivity, we perform parallel tags and data
access in the L2 cache, though we serialize broadcasting the
accessed data block in data array h-tree. Moreover, we as-
sume the ability to dynamically change the threhsold voltage
for the L2 and L3 caches through body biasing. Specifically,
we assume super high-Vt devices throughout [12], but apply

1This also avoids configuring the L3 cache with a single way (128KB)
which makes several of the L2 configurations infeasible due to the need to
maintain inclusion.

Core
4-way out-of-order issue

4-entry IFQ, 16-entry ROB, 8-entry LSQ
4-int, 4-FP, 2-ldst

1K-entry comb (2K bimod and 1K Gag) predictor

Cache Hierarchy
L1 Cache split, 32 KB, 8-way, 64-byte blocks

Latency: 2 cycles
Parallel tag, data, and data array h-tree
Data Read Energy: 0.0729 nJ
Leakage: 22.11 mW

L2 Cache unified, 256 KB, 8-way, 64-byte blocks
Latency: 3 cycles
Paralle tag and data, serial data array h-tree
Data Read Energy: 0.7361 nJ
Leakage (standby/active): 44.09 mW / 2380 mW

L3 Cache unified, 2 MB, 16-way, 64-byte blocks
Latency: 7 cycles
Serial tag, data, and data array h-tree
Data Read Energy: 1.888 nJ
Leakage: 88.31 mW / 6711 mW

DRAM Data Read Energy: 10 nJ

Table 1: Simulation parameters used for the experiments.

reverse body bias (RBB) in standby mode to further reduce
standby leakage [30]. When an access occurs, we apply a for-
ward body bias (FBB) to restore the threshold voltage for low
access delay. We assume that applying FBB does not impact
the access delay for the cache [30]. We utilize stack effect in
conjunction with ABB to model way selection [25, 30]. We
use CACTI 6.5 [21] for power modeling and use the Model
for Assessment of cmoS Technologies And Roadmaps (MAS-
TAR 2011) from ITRS [20] to derive parameters required for
CACTI according to the assumption.

To drive our simulations, we use 22 SPEC CPU2006 bench-
marks (11 integer and 11 floating point), as shown in Ta-
ble 2. We compiled the benchmarks on Alpha CPU emula-
tor. We run Debian Etch on it and used native Alpha com-
piler, gcc-4.1.1. We compiled the benchmarks with optimiza-
tion of -O2 option and linked glibc-2.5 statically. One inte-
ger benchmark (403.gcc) and six floating point benchmarks
(416.gamess, 433.milc, 447.dealll, 450.soplex, 465.tonto, and
481.wrf) could not be compiled, so they have been omitted
from our study.

Using the reference inputs, all of the benchmarks were
run to completion on SimPoint [10]. The second column
in Table 2, labled “SPt,” reports the number of simulation
points that SimPoint identified (each simulation point con-
tains 100M instructions). Then, we ran each benchmark’s
simulation points on our modified Simplescalar simulator 512
times, once for each of the 512 possible cache sizing configu-
rations, and measured the resultingED2. The three columns
labeled “Static Optimal” in Table2 report the number of L1,
L2, and L3 cache ways corresponding to the configuration
with the bestED2. This is the static-optimal MCR configura-
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Benchmark Static Optimal % % Sequential
SPt L1 L2 L3 CPI DRAM L1 L2 L3

Integer
400.perlbench 14 2 2 4 8% 4% 4 8 6
401.bzip2 21 2 3 16 2% 0% 2 4 16
429.mcf 27 2 2 16 0% 0% 2 2 16
445.gobmk 22 2 2 4 12% 6% 4 8 6
456.hmmer 19 4 3 12 2% 3% 4 3 12
458.sjeng 16 2 1 4 8% 1% 4 8 4
462.libquantum 17 1 1 4 0% 0% 1 2 4
464.h264ref 15 2 2 4 17% 12% 8 3 12
471.omnetpp 3 3 2 16 2% 0% 5 2 16
473.astar 21 2 2 12 4% 2% 2 3 12
483.xalancbmk 20 2 2 6 9% 7% 2 8 8
Floating Point
410.bwaves 24 8 2 4 0% 0% 8 2 4
434.zeusmp 29 2 1 4 6% 7% 3 3 4
435.gromacs 20 1 1 4 3% 2% 2 2 4
436.cactusADM 6 2 2 4 3% 1% 3 2 4
437.leslie 25 5 2 4 4% 4% 8 2 6
444.namd 23 1 1 4 7% 0% 6 2 4
453.povray 16 2 2 4 6% 0% 3 3 4
454.calculix 16 1 1 4 -1% 1% 2 2 4
459.GemsFDTD 22 3 3 4 3% 4% 4 4 6
470.lbm 14 2 1 4 0% 0% 2 4 6
482.sphinx3 19 2 1 4 3% 6% 3 2 4

Average 2.4 1.8 6.5 4.4% 2.7% 3.7 3.6 7.4

Table 2: SPEC CPU2006 benchmarks used in the experiments. Co lumns report number of simulation points, number of L1/L2/L 3
ways employed by static-optimal MCR, percent increase in CP I, percent increase in DRAM dynamic energy, and number
of L1/L2/L3 ways employed by sequential MCR.

 0

 0.2

 0.4

 0.6

 0.8

 1

p
e
r
l
b
e
n
c
h

b
z
i
p
2

m
c
f

g
o
b
m
k

h
m
m
e
r

s
j
e
n
g

l
i
b
q
u
a
n
t
u
m

h
2
6
4
r
e
f

o
m
n
e
t
p
p

a
s
t
a
r

x
a
l
a
n

b
w
a
v
e
s

z
e
u
s
m
p

g
r
o
m
a
c
s

c
a
c
t
u
s
A
D
M

l
e
s
l
i
e
3
d

n
a
m
d

p
o
v
r
a
y

c
a
l
c
u
l
i
x

G
e
m
s
F
D
T
D

l
b
m

s
p
h
i
n
x
3

S
P
E
C
i
n
t

S
P
E
C
f
p

S
P
E
C
a
l
l

L3S
L2S
L1S
L3D
L2D
L1D

Figure 1: Breakdown of L1, L2, and L3 dynamic and static energ y for the SPEC CPU2006 benchmarks. The last 3 bars show the
average over the SPECint (first 11 bars), SPECfp (second 11 ba rs), and all benchmarks.

tion.

2.2. Evaluation

Before presenting the MCR results, we first characterize our
baseline cache hierarchy by showing the total energy dissipa-
tion across all of the caches. (Because our results later on
will involve techniques that affect execution time, we always
report energy rather than power consumption). In particular,
Figure1 breaks down the energy consumed in the L1, L2, and
L3 caches including both dynamic and static energy, labeled
“L1 dynamic,” “L2 dynamic,” “L3 dynamic,” “L1 static,” “L2
static,” and “L3 static,” respectively. The first 11 bars show

breakdowns for the SPECint benchmarks, the second 11 bars
show breakdowns for the SPECfp benchmarks, while the last
3 bars show breakdowns averaged across the integer and float-
ing point benchmarks, labeled “SPECint” and “SPECfp,” and
then across all the benchmarks, labeled “All.”

Not surprisingly, the L1 cache’s high access frequency
leads to significant dynamic energy dissipation. In Figure1,
we see L1 dynamic energy accounts for 22.1% of the total on-
chip cache energy averaged across all the benchmarks. When
including static energy consumption, the L1 cache accounts
for almost 1

3rd of the total cache energy (31.7%). But this
leaves a significant portion of the energy unaccounted for. In
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fact, the most dominant component is the L3’s static energy,
accounting for 38.0% of the total on-chip cache energy on
average. Notice, the L3 is still a major consumer even af-
ter applying aggressive ABB techniques to mitigate its leak-
age. Moreover, other sources of energy dissipation across the
cache hierarchy are significant as well. In particular, Figure1
shows the L2’s static energy contributes 19.2% on average.
Even the L2 and L3’s dynamic energy (6.3% and 5%, respec-
tively) are non-trivial. These results show there is significant
energy/power consumption across all of the caches. So, ap-
plying cache resizing toeverycache in the multi-level hierar-
chy has the best chance to achieve large power savings.

Figure2 presents our MCR results. The bars labeled “SO”
report the energy consumption of the static-optimal version
of MCR, which uses the cache-way configurations listed in
Table2 (columns labeled “Static Optimal”). Each bar in Fig-
ure2 is normalized to the corresponding application’s energy
consumption for the baseline cache hierarchy reported in Fig-
ure 1 and is broken down into the same six components as
before. Results for the SPECint and SPECfp benchmarks ap-
pear in the top and bottom graphs of Figure2, respectively.

The static-optimal version of MCR achieves significant en-
ergy savings. As the “All” bars in Figure2 show, static-
optimal MCR reduces energy dissipation by as much as
81.8% (libquantum), and by 58.9% on average across all of
the benchmarks. Six benchmarks experience an energy reduc-
tion exceeding 70%.

At the same time, static-optimal MCR does not degrade
performance significantly. The sixth column of Table2, la-
beled “% CPI,” reports the percentage increase in CPI for
static-optimal MCR compared to the baseline cache hierarchy.
As Table2 shows, 14 of the 22 benchmarks incur less than 5%
performance degradation, with all but 2 benchmarks slowing
down by less than 10%. Averaged across all the benchmarks,
static-optimal MCR degrades performance by only 4.4%.

These performance degradations are due in part to an in-
creased L3 cache miss rate. Having more L3 misses not only
impacts performance, it also increases dynamic power con-
sumption in main memory. The seventh column of Table2,
labeled “% DRAM,” reports the increase in dynamic energy
incurred within DRAMs as a percentage of the total on-chip
cache energy. As Table2 shows, the energy increase in main
memory is only 2.7% of the total on-chip cache energy when
averaged across all the benchmarks. Even after accounting
for main memory effects, static-optimal MCR is still able to
provide a 56.2% reduction in energy consumption. Overall,
our results show static-optimal MCR reduces energy signifi-
cantly at a minimal cost to performance.

The large energy/power savings of static-optimal MCR are
due to its aggressive down-sizing of caches. As the “Static
Optimal” columns in Table2 show, our technique employs
only 2.4, 1.8, and 6.5 cache ways on average (last row in
Table2) for the L1, L2, and L3 caches, respectively. This
represents a 70%, 77.5%, and 59.4% reduction in cache ca-

pacity. More importantly, notice this cache down-sizing is
comprehensive, occurring significantly acrossall three levels
of cache. In fact, Table2 shows static-optimal MCR chooses
a smaller number of ways than the baseline in every case ex-
cept three (the L3 cache for bzip2, mcf, and omnetpp).

Because the entire cache hierarchy is consistently down-
sized, static-optimal MCR targets every power source pointed
out in Figure1. Comparing the “All” bars in Figures1 and2,
we see the two major sources–L1 dynamic and L3 static–are
reduced by 68% and 60% on average, respectively. L2 static
energy is reduced even more, by 77%. And the L1 static and
L2 dynamic components are reduced by 68% and 49%, re-
spectively. (Interestingly, L3 dynamic energy increases by
48% due to multi-level interactions which we will discuss in
the next section.) These results emphasize the effectiveness
of multi-level resizing in exploiting all opportunities for en-
ergy/power savings across a multi-level cache hierarchy.

Finally, we point out static-optimal MCR gains are asym-
metric across datatype. As the “SPECfp” and “SPECint” bars
from Figure 2 show, energy is reduced by 68.8% for the
floating point benchmarks compared to 50.7% for the integer
benchmarks. The SPECfp benchmarks exhibit less temporal
locality compared to the SPECint benchmarks, so configur-
ing caches with large capacity tends to be wasteful. This
encourages more aggressive cache down-sizing. The most
dramatic example of this is for the L3 cache. On the base-
line cache hierarchy, L3 static energy is 38% higher for the
SPECfp benchmarks compared to the SPECint benchmarks
(see Figure1). But after applying static-optimal MCR, it be-
comes 37% lower (see Figure2). The greater opportunity to
reduce cache capacity without impacting performance results
in superior energy savings for the floating point benchmarks.

2.3. Multi-Level Interactions

As discussed in Section1, cache resizing changes the balance
between the power consumed by a cache and the power con-
sumption it inflicts on the next level of cache through its cache
misses. A significant challenge for MCR isto negotiate this
balance simultaneously across all resized caches.

More specifically, resizing decisions across caching levels
are coupled, a fact that MCR can exploit. When trying to pick
a cache size at a particular caching level, MCR is not “stuck”
with the access energy of a downstream cache. Instead, MCR
can down-size the downstream cache to reduce the cost of
cache misses, thus enabling more aggressive down-sizing for
the cache in question. MCR is also not a helpless bystander in
terms of the upstream cache’s incident reference stream. In-
stead, MCR can up-size the upstream cache to reduce its miss
rate, thus enabling more aggressive up-sizing for the cachein
question, if desirable.

This section evaluates how important optimizing such inter-
cache interactions is to the gains reported in Section2.2. In
particular, we compare static-optimal MCR–which by defi-
nition achieves the best balance across all caching levels–
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Figure 2: Comparison of static-optimal and sequential MCR. Individual bars are broken down into L1, L2, and L3 dynamic an d
static energy. Top graph shows SPECint results while bottom graph shows SPECfp results.

against a different technique that only achieves local bal-
ance. In the alternate technique, we sequentially search each
caching level separately, allowing only that level to resize.
During each level’s search, the other non-searched levels
maintain their baseline capacities. Then, we combine the best
capacities found (i.e., achieving bestED2) from all per-level
searches into a single configuration. We call this technique
“sequential MCR.” Sequential MCR still aggressively down-
sizes individual caches, but it cannot optimize the coordina-
tion of resizing decisions between caching levels. On the
other hand, sequential MCR requires searching fewer config-
urations to find its solution (more on this in a moment).

The last three columns in Table2, labeled “Sequential,” re-
port the number of L1, L2, and L3 cache ways used by se-
quential MCR. As Table2 shows, sequential MCR employs
3.7, 3.6, and 7.4 cache ways on average (last row in Table2)
for the L1, L2, and L3 caches, respectively. But as mentioned
earlier, static-optimal MCR employs only 2.4, 1.8, and 6.5
cache ways. So, static-optimal MCR down-sizes by an addi-
tional 1.3, 1.8, and 0.9 cache ways on average compared to
sequential MCR. This represents a 16.3%, 22.5%, and 5.6%
further reduction in cache capacity for the L1, L2, and L3
caches, respectively.

In Figure 2, the bars labeled “SE” plot the energy dissi-
pation of the sequential version of MCR across our SPEC
benchmarks. Comparing the SE and SO bars in Figure2, we
see that sequential MCR does not achieve as much energy
savings compared to static-optimal MCR for almost every
benchmark. In some cases, the energy savings gap is large.
For 5 benchmarks (perlbench, gobmk, sjeng, h264ref, and
xalancbmk), static-optimal MCR achieves 25% or more en-
ergy savings compared to sequential MCR. For one bench-
mark (h264ref), the gap is 42%. Averaged across all of the
benchmarks, sequential MCR reduces energy dissipation by
48.5% compared to the baseline, which is 10.4% worse than
static-optimal MCR.

As in Section2.2, static-optimal versus sequential MCR
gains are also asymmetric across datatype, with a larger en-
ergy savings gap for the integer benchmarks. Figure2 shows
sequential MCR reduces energy consumption by only 34.5%
for the SPECint behcmarks compared to 50.7% for static-
optimal MCR–i.e., static-optimal MCR saves13rd more en-
ergy than sequential MCR for SPECint. As discussed in
Section2.2, the SPECfp benchmarks exhibit low temporal
reuse, favoring aggressive down-sizing especially for theL3
cache. This leaves very little room for multi-level interactions
to make a difference. In contrast, the SPECint benchmarks
make better use of the on-chip cache, so there is a larger range
of “interesting” cache sizes. In this case, there is much more
room for coordinating cache resizing across levels to make a
bigger difference.

Overall, Figure2 demonstrates MCR algorithms that con-
sider the interactions between different resizing decisions
can achieve significant additional energy/power savings, espe-
cially for benchmarks with good locality characteristics.But
along with this opportunity comes a challenge: inter-cachein-
teractions grow as the product of the number of per-cache con-
figurations. Thus, optimizing them involves complex search.
For example, in our study, sequential MCR requires consider-
ing only 24 configurations while static-optimal MCR requires
considering 512 configurations.

3. Dynamic MCR Techniques

Having considered static off-line approaches, we now study
dynamic MCR techniques. Dynamic MCR techniques deter-
mine multi-level cache configurations at runtime. As such,
they control cache resizing fully automatically–i.e., without
off-line profiling. In addition, they also have the ability to
adapt to time-varying application behavior.

To be successful, dynamic MCR must employ efficient al-
gorithms for determining the best cache configurations; other-
wise, runtime overheads may outweigh the benefits of cache
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resizing. The overhead issue is especially acute for dynamic
MCR since it must determine cache sizes for multiple levels
of cache, as opposed to previous techniques that explicitly
control only a single level of cache. Worse yet, optimizing
inter-cache interactions, which is necessary to achieve the
best configurations, is combinatorially complex and has the
potential to drastically increase overheads (see Section2.3).

This section presents several runtime algorithms for dy-
namic MCR. Section3.1describes techniques that employ in-
telligent search to find the best configurations rapidly. Then,
Section3.2introduces techniques that use reuse distance pro-
filing to predict the best configuration outright. We discuss
each technique’s runtime overhead, as well as its ability to
achieve the optimal cache configuration, before conducting
experiments later in Section4.

3.1. Search

Search techniques directly measure different cache configura-
tions’ performance and power consumption to find the best
one. Section2 performed exhaustive search across multiple
program runs. For dynamic MCR, however, the search pro-
cess occurs during the production run itself, so only a single
run of the program is available. Moreover, because most con-
figurations are sub-optimal, search slows down the program,
introducing runtime overhead. Hence, it is crucial for these
techniques to minimize the amount of time spent searching.

Rather than search exhaustively, we investigate different
strategies for intelligently picking the configurations totry so
that the optimal configuration (or at least a very good one) is
found quickly. The search process can be repeated periodi-
cally to increase the likelihood of finding high-quality solu-
tions. This can also track time-varying application behavior.

To implement search on-line, we divide a program’s exe-
cution into short time intervals, calledepochs, and try differ-
ent cache configurations across different epochs. For all of
our techniques, we assume a fixed epoch size of 1M instruc-
tions. After search completes, the cache hierarchy is con-
figured with the best configuration found, and the program
is allowed to execute with this configuration. When search-
ing repetitively, we alternate between “search phases” and
“execute phases” until program termination. The number of
epochs spent in execute versus search phases can be tuned to
trade off overhead for adaptivity.

3.1.1. Sequential. We consider three different search strate-
gies. The first is a dynamic version of the off-line sequential
MCR technique from Section2.2. As in Section2.2, we se-
quentially search each caching level, trying all capacities at
each level while holding the non-searched levels at their base-
line capacities. We then combine the best capacities found
from the per-level searches into a single configuration. The
only difference is that we try each capacity for only a single
epoch instead of the entire program run.

The advantage of the sequential strategy is that it finds

a good configuration fairly quickly, requiring 24 epochs for
each search phase. But as discussed in Section2.2, the se-
quential strategy rarely finds the best configuration because it
does not effectively optimize inter-cache interactions.

3.1.2. Proportional. The problem with the sequential strat-
egy is that it holds the non-searched caches at their baseline
capacities. For most programs, the baseline capacities are
too large. Hence, the sequential per-level searches find the
best capacities given the rest of the cache hierarchy is over-
provisioned, but this is usually not the global optimum.

We try to improve upon the sequential strategy in two
ways. First, after finding the best capacity for a particular
caching level, we set that level to its best capacity during sub-
sequent searches at the other levels. This provides a more
optimized cache hierarchy for the later searches, resulting in
better choices down the line. Moreover, we start searching for
the L1, then for the L2, and finally for the L3, so the caches
are fixed in smallest to largest cache order. From our experi-
ence, this produces the best results.

Second, when searching a particular caching level, we re-
size the non-fixed levels (i.e., the higher-capacity caches) in
proportion to the level being searched. In other words, when
resizing the L1, the L2 uses the same number of ways as
the L1. And when resizing the L2, the L3 uses twice the
number of ways as the L2. This tends to provide more op-
timized cache capacities downstream in the non-fixed levels.
We call the search technique with both of these improvements
the “proportional” strategy.

Like sequential, the proportional strategy also completes
in 24 epochs, but it finds the optimal configuration more fre-
quently due to its better search strategy. However, propor-
tional can still miss the best configurations. While it provides
better “context” for the per-level searches, there are still many
configurations that are impossible to search. Again, this lim-
its the ability to fully optimize inter-cache interactions.

3.1.3. Hill-Climbing. Our last search strategy is hill-
climbing. In this approach, search phases begin by trying
the configuration with half the maximum capacity at each
caching level–4 ways of L1, 4 ways of L2, and 8 ways of
L3–and setting this to be the “current-best” configuration.
Then, we try “nearby” configurations that differ by one cache
way. In particular, we try six configurations, each adding
or subtracting a single cache way to or from the current-
best’s L1, L2, or L3. Among these trials, we identify the
one with largestED2. If this “best-neighbor” is better than
current-best, we set current-best to best-neighbor and repeat
the search across neighbors from the new current-best config-
uration. This process continues until no neighbor improves
on current-best, at which time the search phase completes.

In contrast to sequential and proportional, the hill-climbing
strategy can reach any configuration in the search space, so it
can potentially find the optimum everytime. However, hill-
climbing’s movement towards the optimal configuration may
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be obstructed by local optima and/or noisy dynamic behavior
across epochs.

Whereas sequential and proportional always finish after
24 epochs, hill-climbing’s latency is application dependent.
Hill-climbing is generally more expensive because it moves
slowly, requiring six epochs to learn the direction of largest
ED2 increase. On the other hand, because sampling starts
from the “average” configuration, hill-climbing begins close
to all solutions. For optimal configurations that are near the
average configuration, hill-climbing can exhibit even lower
runtime overhead than sequential or proportional.

3.2. Prediction

In addition to search, we also consider prediction-based tech-
niques. These techniques predict the behavior of different
cache sizing configurations via reuse distance profiles, thus
eliminating search overhead. Our approach relies onway
counters[27]. In this technique, a separate counter is im-
plemented per cache way, each representing a different stack
position across the cache sets. On a cache hit, the stack depth
of the hitting cache block is identified, and the correspond-
ing way counter is incremented. Hence, each way counter
tracks the number of hits attributable to cache blocks at a
particular stack depth, permitting prediction of the number
of additional misses that would occur as cache capacity is
reduced in way increments. Way counters have been used
extensively to partition shared caches for multiprogrammed
workloads [6, 11, 24, 16, 27, 28, 29].

We adapt way counters for dynamic MCR. In particular, we
extend all three caches in our cache hierarchy with way coun-
ters. We also replace the search phases from Section3.1with
“profiling phases.” During a profiling phase, we configure
all caches with their maximum capacity, thus acquiring way
counts (and cache-miss predictions) for every possible capac-
ity at each caching level. Since all capacities are profiled si-
multaneously, profiling phases can be short. When profiling
on-line, each profiling phase lasts for three epochs.

At the end of each profiling phase, we perform predic-
tion. Because way counters can predict cache misses for
every capacity, we can exhaustively predict per-level cache-
miss counts for all combinations of capacities across the three
caching levels–i.e., 512 configurations. After predicting each
configuration’s cache-miss counts, we then predict perfor-
mance and power consumption. (Section4.1will discuss how
this is done). This yields anED2 prediction for each cache
sizing configuration, allowing identification of the best con-
figuration.

Although reuse distance profiling avoids search overhead,
it does incur runtime overhead to compute the predictions.
In addition, reuse distance profiling may incur prediction er-
ror, especially since it cannot directly measure performance.
Lastly, the technique consumes slightly more power during
profiling phases due to the addition of way counters. On the
other hand, prediction via reuse distance profiles is the most

comprehensive technique since it can exhaustively evaluate
inter-cache interactions.

4. Dynamic MCR Results

This section evaluates the dynamic MCR techniques intro-
duced in Section3. We first discuss implementation issues.
Then, we present the on-line performance and power results.

4.1. Implementation

We implemented our dynamic MCR techniques in the simu-
lator from Section2.1. In particular, we modified our simu-
lator to distinguish between search/profiling phases and exe-
cute phases. During search or profiling, our simulator posts
an interrupt every 1M instructions–i.e., every epoch–and ex-
ecutes an interrupt handler. (This occurs for as many epochs
as needed to complete the search or profiling phase). We also
modified the simulator to allow software to reconfigure its
caches. For the search-based techniques, the interrupt han-
dlers implement one of the search strategies from Section3.1,
reconfiguring the cache across epochs to try different cache
sizing configurations. After each epoch, the interrupt handler
measures the performance and power consumed for the previ-
ous configuration before trying the next configuration.

Performance and power measurements are provided by
hardware performance counters in the simulator. In particu-
lar, each interrupt handler reads a cycle counter to measure
an epoch’s execution time. We also implemented cache ac-
cess and cache miss counters for each caching level. Using
per-access energies from CACTI and the cache access counts,
the interrupt handler can compute an epoch’s dynamic energy
consumption. And using per-cycle leakage currents from
CACTI and cycle counts, the interrupt handler can compute
an epoch’s static energy consumption. Together, these mea-
surements yieldED2 values for each searched configuration.

To facilitate prediction, our simulator implements way
counters at each caching level2 which the interrupt handler
can also read. At the end of each profiling phase, the inter-
rupt handler predictsED2 for all possible cache sizing con-
figurations, as described in Section3.2. Energy is computed
in the same way as for the search-based techniques, except
the cache access and miss counts are predicted from the way
counts rather than being measured. Performance is computed
by using the predicted cache miss counts at each caching level
to derive the average memory access time, which is then used
to compute CPI assuming a single-issue in-order processor–
i.e., CPIin−order. To estimate the impact of ILP exploitation
on actual CPI, we measure the ratio CPIactual / CPIin−order in
previous profiling phases, and apply the same ratio to derive
CPIactual for the current profiling phase.

Our simulator accounts for the overheads associated with
resizing each cache. When up-sizing, we assume 1000 cycles

2Although negligible, the way counters’ power consumption is accounted
for during the profiling phases by our simulator.
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Figure 3: Comparison of sequential, proportional, hill cli mbing, and RD-based prediction. Individual bars are broken down into
L1, L2, and L3 dynamic and static energy. Top graph shows SPEC int results while bottom graph shows SPECfp results.

to power up each way, and 10 cycles per way to flash invali-
date the newly powered-on cache blocks. When down-sizing,
we walk the down-sized way(s) to flush the contents. Clean
cache blocks are discarded after checking upstream caches
to maintain inclusion. Dirty cache blocks check upstream
caches and are also written back to the next-lower level. We
assume these operations are piplined such that flushing takes
1 cycle per walked cache block. Down-sized ways are se-
lected in reverse way ID order. Because we do not physically
move cache blocks once they are filled, the flushed cache
blocks have an equal probability of being at any position in
the LRU stack. Moreover, we do not attempt to reconstruct
the per-set LRU stacks after flushing. Resizing is performed
on the L1, then the L2, and lastly the L3 cache.

To drive our experiments, we use the SPEC CPU2006
benchmarks from Table2. In particular, we use the same sim-
ulation points as reported in Table2, except we extend each
one from 100M instructions to 500M instructions. Finally, we
allow each dynamic MCR technique to perform four cache
resizings (i.e., we run four search/profiling phases each fol-
lowed by an execute phase) per 500M instruction simulation
point.

4.2. Results

Figure 3 presents our dynamic MCR results. This figure
shows the energy consumption in the cache hierarchy for dif-
ferent dynamic MCR techniques in a format similar to Fig-
ure2. The bars labeled “S,” “P,” and “H” report total energy
consumption for the sequential, proportional, and hill climb-
ing search techniques, respectively, while the bars labeled
“R” report total energy consumption for the reuse distance-
based prediction technique. Each bar in Figure3 is normal-
ized to the corresponding application’s energy consumption
for the baseline cache hierarchy, and is broken down into the
same dynamic/static components for the L1, L2, and L3 as

in Figure 2. Averages over different datatypes are labeled
“SPECint” and “SPECfp” while averages over all benchmarks
are labeled “All.”

These results demonstrate our dynamic MCR techniques
can provide significant energy savings compared to the base-
line cache hierarchy. As the “All” bars in Figure3 show,
dynamic MCR provides between 40% energy savings when
using the sequential strategy to as much as 62% energy sav-
ings when using the reuse distance-based prediction strategy
averaged across all of the SPEC benchmarks. In addition,
comparing these results to Figure2, we see our dynamic
MCR techniques achieve the potential energy savings that
off-line techniques provide. Specifically, the on-line version
of sequential MCR loses only 9% of the off-line sequential
MCR savings (40% vs. 49%), and the best dynamic MCR
technique, reuse distance-based prediction, actually achieves
slightly more savings than the static-optimal MCR savings
(62% vs. 58.9%). This is impressive considering dynamic
MCR incurs runtime overhead to find the best configurations
and to resize caches.

Figure 3 also illustrates the benefits of our intelligent
search and prediction techniques. As the “P” bars in the “All”
category show, the proportional strategy provides 51% energy
savings, which is an additional 11% more than the sequential
strategy. In fact, comparing the “P” and “S” bars across all
the benchmarks, we see proportional is better than sequential
in 18 of the 22 benchmarks. This shows proportional’s ap-
proach in providing better contexts for the per-level searches
compared to sequential can make a significant difference.

Looking at the “H” bars in the “All” category of Figure3,
we see the hill climbing strategy is comparable to the propor-
tional strategy, also providing an energy savings of 51%. As
mentioned earlier, hill-climbing can exhibit long search times
and can get stuck on its way to the optimum. We found the lat-
ter to be especially true for the SPECfp benchmarks. In this
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% CPI % DRAM
S P H R S P H R

SPECint Benchmarks
400.perlbench 17.6% 25.9% 23.2% 14.5% 14% 15.1% 14.1% 5.3%
401.bzip2 19.7% 42.2% 21.2% 25.6% 17.5% 36.8% 19.8% 19.9%
429.mcf 2.5% 3.4% 9.6% 3% 4.6% 5% 15% 3.5%
445.gobmk 8.9% 9.7% 9.1% 12.2% 6.5% 7.1% 2% 3.2%
456.hmmer 7.7% 12.3% 9.3% 17.2% 17.8% 26.7% 22.8% 16%
458.sjeng 3.9% 14.1% 5.6% 8.1% 2.1% 3.6% -0.5% 0.6%
462.libquantum 1.3% 0% 0% 0% 1.5% -5.7% -1.4% -0.3%
464.h264ref 12.8% 27.4% 14.4% 23.3% 11.1% 16.8% 9.5% 10.1%
471.omnetpp 10.7% 12.7% 16.1% 10.4% 22.8% 14% 20.3% 11.5%
473.astar 7% 9% 11.5% 1.7% 10.1% 22.5% 16.6% -4.1%
483.xalancbmk 7.3% 18.7% 6% 16.5% 7.5% 18.6% 4.1% 13.4%
SPECfp Benchmarks
410.bwaves 3.1% 4.6% 5.1% 5% 2% 0% 1.5% 0.3%
434.zeusmp 3.3% 8.5% 3.5% 6.1% 5.1% 7.9% 2.5% 4.8%
435.gromacs 3.3% 11.3% 1.4% 2.1% 4.4% 14.6% 1.3% 1.1%
436.cactusADM 6.1% 10.4% 3.5% 6.5% 6.4% 2% 0.6% 0.9%
437.leslie 4.5% 9.3% 4% 13.8% 4.7% 1.7% 0.5% 2.5%
444.namd 4.5% 9.3% 3.4% 6.4% 3.8% 4.3% 0.9% 0.5%
453.povray 10.1% 10.1% 4.9% 10.7% 7% 4.8% 0.8% 0.2%
454.calculix 0% 0% 0% 0% 2.8% 0.7% 0.6% 0.1%
459.GemsFDTD 2.9% 7.9% 1.5% 18.2% 3% 2.3% 0% 3.5%
470.lbm 0.2% 0.1% 0% 2.6% 1.2% -1% -3.6% -0.4%
482.sphinx3 1.9% 3.5% 1.6% 3.2% 2.9% 4.4% 4% 6.2%

Avg 6% 12% 7% 9% 7% 9% 6% 4%

Table 3: Dynamic MCR performance and DRAM energy results. “% CPI” and “% DRAM” columns report % increase in CPI and
DRAM dynamic energy, respectively.

case, hill climbing is actuallyworsethan proportional. But
for the SPECint benchmarks where there is a greater potential
for optimizing inter-cache interactions (see Section2.3), the
increased flexibility of hill climbing’s search strategy com-
pared to proportional results in noticeable benefits. As the
“SPECint” bars in Figure3 show, hill-climbing provides 5.5%
more energy savings than proportional.

While the benefits of optimizing inter-cache interactions is
apparent in hill climbing, it is most visible for reuse distance-
based prediction. Comparing the “R” and “P” bars in the “All”
category of Figure3, we see prediction provides 11.1% more
energy savings than proportional search; and comparing the
“R” and “H” bars in the “All” category, we see prediction pro-
vides a similar 11.4% more energy savings than hill climbing
search. As discussed in Section3.2, reuse distance-based pre-
diction exhaustively considers all sizing configurations.The
results in Figure3 show such comprehensive evaluation can
provide increased energy savings through better optimization
of inter-cache interactions.

The columns in Table3 labeled “S,” “P,” “H,” and “R” un-
der “% CPI” report the percentage increase in CPI for the
sequential, proportional, hill climbing, and reuse distance-
based prediction techniques, respectively. Averaged across all
the benchmarks, the performance degradation for sequential,
hill climbing, and prediction is between 6–9%. As shown in

Table2, the performance degradation for static-optimal MCR
is only 4.4%. So, these dynamic MCR techniques pay an ad-
ditional 1.6–4.6% performance loss on average for their run-
time overheads. Unfortunately, the proportional strategyhas
noticeably higher performance degradation, 12%. Although
proportional only runs 24 epochs to complete each search
phase, many of the searched configurations have very poor
performance. In particular, proportional scans the L3 cache
when searching for the best L1 and L2 capacities, so it often
runs with very high L3 miss rates which impact performance
significantly.

Finally, the columns in Table3 under “% DRAM” report
the increase in dynamic energy incurred within DRAMs as a
percentage of the total on-chip cache energy. (Again the “S,”
“P,” “H,” and “R” columns refer to our four dynamic MCR
techniques). These results show off-chip memory consumes
between 4–9% more energy due to increased misses from L3
cache down-sizing. Again, these are larger than the static-
optimal MCR results (2.7% in Table2) and represent the
lower-quality cache sizing decisions that are made dynami-
cally as compared to an omniscient off-line technique. Never-
theless, the DRAM energy increases are still relatively small
compared to the overall on-chip cache energy reductions.
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5. Related Work

A large body of work exists on cache resizing. Selective
cache ways [1] uses off-line profiling to drive disabling of
cache ways for dynamic power savings. DRI caches [23, 33,
32] use cache-miss counts to detect over-provisioning, and re-
size across either cache sets or ways. In addition, DRI caches
also gate the power supply to unused portions of cache, con-
serving both dynamic and static power. Madanet al [18] pro-
pose resizing L2 caches by dynamically extending their ca-
pacity into stacked DRAM. Maliket al [19] study selective
ways in the MCore CPU. All of these prior studies consider
resizing a single level of cache only whereas MCR addresses
the problem of resizing multiple levels of cache. In particular,
we develop novel algorithms for navigating the much larger
configuration space in the multi-level case to efficiently find
the best configurations.

Balasubramonianet al [3, 4] propose resizing two levels of
cache, either the L1/L2 or the L2/L3, by partitioning a com-
mon pool of SRAM arrays to different caching levels. Be-
cause partitionings always utilize all of the available SRAM,
only one cache’s size is controlled independently. Hence, in
this technique, it is impossible to optimize the balance point
of different caching levels simultaneously as is done in MCR.

Besides resizing, researchers have studied other adaptive
cache techniques as well. Dropshoet al [7] proposeaccount-
ing cacheswhich divide a cache’s ways into primary and sec-
ondary groups. Each cache access searches the two groups
sequentially, accessing the secondary only on a primary miss.
This saves power if secondary accesses are infrequent. Zhang
et al [35] proposeway concatenationwhich permits flexible
organization of cache banks to form direct-mapped, 2-way, or
4-way set-associative caches. Neither accounting caches nor
way concatenation address capacity allocation across differ-
ent levels of cache, the main focus of MCR.

Silva-Filho et al [26] and Gordon-Rosset al [9] study
design-time techniques for optimizing 2-level cache hierar-
chies. This body of work tries to find the best block size and
associativity–as well as cache capacity–for two caching lev-
els. They consider a more complex design space than we do,
and employ more costly search techniques that are suitable
for design analysis only. In contrast, MCR is an architecture-
level power management technique. It solves a more con-
strained problem, but provides algorithms suitable for run-
time use. Similarly, Zhang and Vahid [34] search for the best
cache architecture using a reconfigurable hardware platform.
But they only consider optimizing a single level of cache.

Cache partitioning explicitly allocates shared cache across
multiprogrammed workloads, providing cache to those pro-
grams that can best utilize it. The majority of techniques
focus on performance [6, 24, 16, 27, 28, 31]. More re-
cently, techniques have also tried to reduce power consump-
tion [11, 29] by withholding allocation and shutting down
portions of the shared cache, similar to cache resizing. Like

MCR, cache partitioning also employs reuse distance profiles
to drive allocation decisions. But cache partitioning is a “hor-
izontal” allocation technique compared to MCR which is a
“vertical” allocation technique. While both can save power,
cache partitioning does so by optimizing utility across com-
peting threads whereas MCR does so by optimizing balance
between caching levels.

Finally, significant research has explored circuit-level tech-
niques for reducing a cache’s static power consumption.
Multi-Vt techniques [2, 14] employ low-Vt devices along crit-
ical paths and high-Vt devices along non-critical paths to save
power while still maintaining performance. Gated-VDD [23]
uses high-Vt devices to gate the power supply to unused por-
tions of cache. Adaptive body bias [13, 22] controls the back-
gate voltage to place devices in a standby low-leakage mode
when not in use, but then restores the devices to an active
high-performance mode when the cache is accessed. Lastly,
dynamic voltage scaling [8, 15] can similarly transition be-
tween standby and active modes by scaling the supply voltage.
Similar to other cache resizing techniques [33, 32], MCR re-
lies on Gated-VDD to essentially eliminate leakage for unused
portions of the cache.

6. Multicore Integration

MCR allocates resources “vertically” across different caching
levels within a cache hierarchy. In this paper, we have focused
on resizing the caches underneath a single core only in order
to study the main effects. But MCR can also be integrated
into multicore CPUs as well. The multicore cache hierarchy
with the most natural fit to MCR is one in which all caches
are private. In this case, MCR can be applied to each “ver-
tical slice” of the chip’s cache system. The cache coherence
protocol, which would most likely maintain coherence across
the private last-level caches (LLCs), would need to be aware
of cache resizing and only track cache blocks within active
ways of each private LLC. But the sizing control for different
cores’ caches would not need to coordinate.

Most multicore CPUs today, however, employ shared
LLCs. Integrating MCR into a processor with a shared LLC
is also easy if the CPU employs cache partitioning. As dis-
cussed in Section5, cache partitioning horizontally allocates
portions of a shared cache to cores, providing each core with
some number of cache ways. MCR can be appliedafter the
partitioner makes its partitioning decision. Then, all that is
needed is for the partitioner to inform MCR how many ways
of the shared LLC it can resize up to. In that case, again there
would be no interaction between MCR sizing control for dif-
ferent cores.

An interesting question is whether cache partitioning could
be more effective if its horizontal allocation decisions were
coupled with MCR’s vertical allocation decisions. For exam-
ple, if the partitioner knew that a program running on a par-
ticular core could more aggressively down-size its upstream
caches given a smaller number of ways in the shared LLC, it
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might try to allocate more ways to other cores. Such “global”
optimization that considers horizontal and vertical allocation
interactions may ultimately provide the best power efficiency.
Exploring such issues is a natural direction for future work.

7. Conclusion

This paper presents MCR, an architecture-level power man-
agement technique that resizes all caches in a modern cache
hierarchy simultaneously. Our work shows a static-optimal
version of MCR applied to a 3-level cache hierarchy can re-
duce total energy dissipation by 58.9% while degrading per-
formance by only 4.4% across 22 SPEC CPU2006 bench-
marks. We find a non-trivial portion of this gain–1

3rd for the
SPECint benchmarks–comes from optimizing inter-cache in-
teractions. Our work also proposes several dynamic MCR
techniques that can find the best sizing configurations at run-
time. We show dynamic MCR can achieve between 40–62%
energy savings while degrading performance by 7–9%.
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