
University of Maryland Technical Report UMIACS-TR-2008-13

Probabilistic Replacement: Enabling Flexible Use

of Shared Caches for CMPs

Wanli Liu and Donald Yeung

Department of Electrical and Computer Engineering

University of Maryland at College Park

{wanli,yeung}@eng.umd.edu

Abstract

CMPs allow threads to share portions of the on-chip cache. Critical to successful sharing are the policies

for allocating the shared cache to threads. Researchers have observed the best allocation policy often depends

on the degree of cache interference. Typically, workloads with high cache interference require explicit working

set isolation via cache partitioning, while workloads with low cache interference perform well without explicit

allocation–i.e., using LRU.

While cache interference impacts cache allocation policies, relatively little is known about its root causes.

This paper investigates how different sharing patterns in multiprogrammed workloads give rise to varying

degrees of cache interference. We show cache interference is tied to the granularity of interleaving amongst

inter-thread memory references: fine-grain interleaving yields high cache interference while coarse-grain

interleaving yields low cache interference. Furthermore, interleaving granularity varies due to differences

in mapping and timing of per-thread references in the cache. For example, coarse-grain interleaving occurs

anytime per-thread references map to disjoint cache sets, or are performed during distinct time intervals.

We quantify such spatial and temporal isolation of per-thread memory references, and correlate its degree

to LRU and partitioning performance.

This paper also proposes probabilistic replacement (PR), a new cache allocation policy motivated by our

reference interleaving insights. PR controls the rate at which inter-thread replacements transfer cache re-

sources between threads, and hence, the per-thread cache allocation boundary. Because PR operates on

1

inter-thread replacements, it adapts to cache interference. When interleaving is coarse-grained (low interfer-

ence), inter-thread replacements are rare, so PR reverts to LRU. As interleaving becomes more fine-grained

(higher interference), inter-thread replacements increase, and PR in turn creates more resistance to impede

cache allocation. Our results show PR outperforms LRU, UCP [1], and an ideal cache partitioning technique

by 4.86%, 3.15%, and 1.09%, respectively.

1 Introduction

Chip multiprocessors (CMPs) allow simultaneous threads to share on-chip hardware structures. For

example, it is common in today’s CMPs to share portions of the on-chip memory hierarchy, especially the

lowest level of on-chip cache. Critical to the success of sharing are the policies for allocating the shared

cache to threads. The simplest policy is to allocate cache on demand as a consequence of the cache’s

default replacement policy–e.g., LRU. Under LRU, cache allocation is implicit since the system cannot

specify how much cache individual threads receive. Alternatively, researchers have also investigated cache

partitioning [2, 3, 4, 1, 5, 6, 7, 8, 9] which explicitly allocates cache to threads by enforcing a hard partition

boundary, thus forcing spatial isolation between threads’ working sets. A common approach is to partition

across separate cache ways, though cache-set partitioning is also possible.

Previous research has shown neither cache partitioning nor LRU is universally beneficial [2, 10]. This is

because the two policies are tailored towards different levels of cache interference which varies from workload

to workload. Under high cache interference, partitioning is best because it isolates the interfering working

sets, guaranteeing cache resources to those threads that would otherwise be pushed out. On the other hand,

under low cache interference, working sets can coexist symbiotically in the cache without partitioning. In

this case, LRU is best because it allows threads to share the cache in a flexible manner.

While cache interference is a familiar concept, exactly how it arises and why it varies has not been fully

explored. Given the important role it plays in cache allocation, a deeper understanding of cache interference’s

root causes can potentially help architects develop better policies. This paper conducts an in-depth study of

the memory reference patterns in multiprogrammed workloads, and provides new insights into the nature of

cache interference. We then develop a new cache allocation policy that uses these insights to more effectively

allocate cache to threads compared to previous techniques.

2

We show cache interference is intimately tied to the granularity of interleaving amongst inter-thread

memory references. If fine-grain interleaving occurs, then intra-thread locality can degrade significantly,

yielding high cache interference. But if coarse-grain interleaving occurs, then threads can retain much of

their inherent locality despite cache sharing, yielding low cache interference. Furthemore, the granularity of

reference interleaving varies due to differences in the mapping and timing of per-thread memory references.

Threads whose references map to disjoint cache sets or are performed during distinct time intervals exhibit

coarse-grain interleaving; otherwise, fine-grain interleaving occurs.

To demonstrate these insights, we compare cache partitioning against LRU across an exhaustive set of

325 2-program workloads as well as a smaller set of 13 4-program workloads consisting of SPEC CPU2000

benchmarks. Among workloads where the allocation policy makes a difference, we find partitioning outper-

forms LRU 71% of the time while LRU outperforms partitioning 29% of the time, confirming that neither

cache partitioning nor LRU is universally beneficial. Our results also show there exists a strong correlation

between reference interleaving granularity and the amount of cache interference each workload experiences

(and hence, whether it prefers partitioning or LRU). For example, in the 2-program workloads, when the

combined average memory reference runlength for threads is less than (greater than) 7.4, the workload per-

forms best under partitioning (LRU) 89% of the time. Finally, while interleaving granularity varies across

workloads, our results also indicate such variation occurs considerably across cache sets from the same work-

load as well. In other words, the preference for partitioning or LRU is a per-cache set phenomenon; whether

a workload prefers partitioning or LRU overall depends on which type of cache set dominates.

In addition to studying cache interference, we also propose probabilistic replacement (PR), a new cache

allocation policy. Our approach integrates an explicit cache allocation mechanism into the basic LRU policy.

Under LRU, the amount of cache each thread receives is determined by the rate at which threads replace

each other’s cache blocks (the inter-thread replacement rate). Rather than always replace the LRU block,

on certain cache misses, PR replaces a block belonging to a different thread probabilistically. By tuning the

probability for deviating from the LRU choice, the inter-thread replacement rate can be modulated, thus

controlling cache allocation. In essence, while cache partitioning “sets up a wall” to contain cache allocation,

3

PR “puts up resistance” to impede the rate of cache allocation.

Because PR is a rate-based allocation mechanism, it naturally adapts to different granularities of memory

reference interleaving, and hence, to different degrees of cache interference. When interleaving is coarse-

grained, inter-thread replacements are rare, so PR becomes LRU-like. As interleaving becomes more fine-

grained, inter-thread replacements increase–i.e., greater cache interference–and in turn, PR is invoked more

frequently. Consequently, the resistance PR puts up to impede cache allocation is in proportion to the degree

of cache interference. This allows PR to adapt to varying cache interference levels, both across workloads

as well as across cache sets within the same workload. Our results show PR outperforms LRU, a state-of-

the-art cache partitioning technique, and an ideal cache partitioning technique by 4.86%, 3.15%, and 1.09%,

respectively.

The remainder of this paper is organized as follows. Section 2 discusses the basic issues behind memory

reference interleaving and its impact on cache allocation, and then motivates PR. Then, Section 3 studies

memory reference interleaving in detail. Next, Section 4 presents the full PR policy, and evaluates its

performance. Finally, Sections 5 and 6 discuss related work and conclusions, respectively.

2 Memory Interleaving’s Impact on Cache Allocation

When programs share a cache, performance can degrade due to interference between per-program working

sets. Without explicit management, the memory-intensive programs will likely receive the most cache, which

often results in poor performance. The current solution to this problem is cache partitioning [2, 3, 4, 1, 5, 6,

7, 8, 9]. Cache partitioning enforces a hard partition boundary between threads in the cache, thus spatially

isolating their working sets. The most popular approach is way partitioning [1, 9] which gives each thread a

fixed allocation of cache blocks in every cache set–i.e., allocation occurs by ways of the cache. The per-set

allocations are enforced via the cache replacement logic which replaces a block belonging to a cache-missing

thread whenever the thread has reached its allocation limit in the set.

Critical to the success of cache partitioning is the selection of the per-thread partition sizes. Most existing

techniques select partitions using stack distance profiles (SDPs). An SDP counts the number of memory

references a program exhibits at different stack distance values, and can compute a program’s cache miss

count as a function of stack depth, N , by simply summing the references in the SDP at stack positions beyond

4

1 2 3 4 >4

1 2 3 4 >4

cache
cache

hits
misses

cache
misses

cache
hits

T1:

T2:

Figure 1. SDPs.

Y
A B C C

Z X
Reference 1:
Reference 2: Y

A B
X Z

Allocation 1:
Allocation 2:

11 1 2 2 22 3 2 1 3
31 2 22 1 2 3 1

2
210

Figure 2. Fine-grain interleaving.

Y
A B C C

Z X
Reference 1:
Reference 2: Y

A B
X Z

Allocation 1:
Allocation 2:

31 2 3 3 13 2 2 1 1
10 1 31 2 2 3 3

1
300

Figure 3. Coarse-grain interleaving.

N .1 Hence, given the SDPs for all programs in a workload, the cache misses for different partitionings can

be assessed, and the one that minimizes cache misses globally can be identified. To illustrate, Figure 1 shows

the SDPs for two hypothetical threads. As shown by the dotted lines, the partitioning that minimizes cache

misses for a 4-way set-associative cache gives each thread 2 cache ways.

Cache partitioning sacrifices references with stack distances beyond the partition boundary to ensure they

do not interfere with references that have stack distances within the partition boundary, thus guaranteeing

the latter will cache hit. For example, in Figure 1, thread T1’s references at stack positions 3 and 4 are

sacrificed (become cache misses) to guarantee resources for thread T2’s references at stack positions 1 and

2, and vice versa. Notice, this pessimistically assumes the former will interfere with the latter. But in many

cases, such interference may not occur. The next section explains why.

2.1 Interleaving Granularity and Cache Interference

Simultaneous threads interfere in a shared cache due to memory reference interleaving. Figure 2 illustrates

this. In Figure 2, program 1 references memory locations A-C and then reuses them, while program 2 does

the same with locations X-Z. Assume a fully associative cache with a capacity of 4 and an LRU replacement

policy. For the reuse references to cache hit, each program must receive at least 3 cache blocks (i.e., the

intra-thread stack distance is 3). Suppose the programs run simultaneously, and their memory references

interleave in a fine-grain manner, as shown in Figure 2. Then, the cache capacity is divided amongst the

two programs as a consequence of the LRU replacements. (The numbers in Figure 2 report the per-program

cache allocation for each memory reference). Due to the memory interleaving, each reuse reference’s stack

distance increases to 6, so the LRU policy is unable to provide sufficient resources to each program at the

1This assumes a cache managed using an LRU replacement policy.

5

time of reuse. Hence, all reuse references cache miss.

Cache partitioning mitigates this degradation in intra-program locality by guaranteeing cache resources to

threads. In Figure 2, cache partitioning would provide one program with a partition of 3 cache blocks, and

the other with a partition of 1 cache block. This guarantees one program enough resources to exploit its reuse

despite the fine-grain interleaving. Although the other reuse references will still cache miss, performance

improves overall due to the additional cache hits. In this case, cache partitioning is necessary and improves

performance because the threads exhibit actual cache intereference.

Unfortunately, cache partitioning can degrade performance in the absence of fine-grain interleaving. Con-

sider the same two programs again, but now assume the memory references interleave in a coarse-grain

manner, as shown in Figure 3. This time, each program’s inherent locality is only slightly impacted by

the simultaneous execution–the reuse references’ stack distances increase to at most 4. Consequently, all

reuse references cache hit because the requisite cache capacity can be flexibly time-multiplexed between the

two programs, as indicated by the cache allocation counts in Figure 3. However, if we naively apply the

3-vs-1 partitioning suggested for fine-grain interleaving, one of the programs would be forced into the smaller

partition of 1 cache block, and its reuse references would cache miss. These cache misses directly degrade

performance since the other program receives no added benefit from its larger partition. In this case, cache

partitioning is unnecessary–the cache interference it tries to mitigate doesn’t occur.

This examples illustrates a key point: the best cache allocation policy depends on how programs’ memory

references interleave at runtime. The finer-grained the interleaving, the more cache interference occurs

and the more intra-thread locality is disrupted, increasing the importance of isolation via partitioning. The

coarser-grained the interleaving, the less cache interference occurs and the more intra-thread locality remains

intact, increasing the importance of flexible cache sharing in LRU.

2.2 Natural Spatial and Temporal Isolation

What determines the granularity of memory reference interleaving in a shared cache? For fine-grain inter-

leaving to occur, the memory references in question must access the same cache sets during overlapping time

intervals. Because most caches are set associative, references that map to disjoint sets cannot interfere with

6

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 40000 42000 44000 46000 48000 50000

se
t i

nd
ex

ref sequence

swim

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 40000 42000 44000 46000 48000 50000

se
t i

nd
ex

ref sequence

twolf

Figure 4. Memory reference pattern

for the swim-twolf workload.

 1100

 1150

 1200

 1250

 1300

 2000 4000 6000 8000 10000 12000 14000 16000

se
t i

nd
ex

ref sequence

apsi

 1100

 1150

 1200

 1250

 1300

 2000 4000 6000 8000 10000 12000 14000 16000

se
t i

nd
ex

ref sequence

gcc

Figure 5. Memory reference pattern

for the apsi-gcc workload.

∆ = miss1*lru2 - miss2*lru1

A1 = miss1* C
miss1 + miss2

A2 = miss2* C
miss1 + miss2

0 = miss1* A2 - miss2* A1
C C

Figure 6. Flow

equations for

2-program case.

each other. In this degenerate case, the memory references are spatially isolated and exhibit no interleaving.

Even when memory references access the same cache sets, if the references occur during predominantly dis-

tinct time intervals, they are temporally isolated and exhibit coarse-grain interleaving. We say inter-thread

memory references can experience varying degrees of natural isolation in both space and time. The presence

of natural isolation yields coarse-grain interleaving, while the absence of natural isolation yields fine-grain

interleaving.

To illustrate different spatial and temporal isolation, Figures 4 and 5 plot the memory references performed

by two workloads, swim-twolf and apsi-gcc. For each plotted point, the Y axis indicates which cache set the

reference maps to, while the X axis indicates the sequence ID (time) of the reference. Heavy versus light dots

distinguish different programs’ references. In Figure 4, swim (light) exhibits a scanning pattern, while twolf

(heavy) accesses the cache uniformly. Swim’s scans touch the entire cache, so they share many common sets

with twolf (little spatial isolation). Moreover, the scans frequently cut in between twolf’s references (little

temporal isolation). Hence, swim-twolf exhibits fine-grain interleaving. In Figure 5, gcc (heavy) exhibits a

uniform pattern, while apsi (light) references a few sets. Apsi’s limited use of the sets means it does not

interact with most of gcc’s references (spatial isolation). Moreover, apsi’s references occur in bursts, so there

is very little chance for interleaving with gcc’s references in the few sets it uses (temporal isolation). Hence,

apsi-gcc exhibits coarse-grain interleaving.

Figures 4 and 5 illustrate workloads can exhibit a variety of different reference interleaving granularities.

Given the discussion in Section 2.1, this suggests neither cache partitioning nor LRU can effectively support

all workloads, implying there is the potential for new policies to achieve higher performance.

7

2.3 Rate-Based Cache Allocation

We propose probabilistic replacement (PR), a new cache allocation policy that effectively addresses both

high and low cache interference. Essentially, PR integrates an explicit cache allocation mechanism into

the LRU policy. Since PR is based on LRU, its approach to cache allocation is LRU-like. In LRU, cache

allocation happens implicitly as a consequence of its replacement decisions. In particular, anytime a cache-

missing thread replaces a block belonging to a different thread (i.e., an inter-thread replacement), the

cache-missing thread’s allocation increases by 1 cache block. Over time, numerous cache blocks can flow

back and forth between threads via inter-thread replacements (e.g., Figures 2 and 3).

Within a given time interval, a thread’s net cache gain, ∆, is simply the difference between the cache

blocks it acquires and the cache blocks it loses. This can be expressed in terms of the number of cache

misses thread i incurs in the time interval, missi (i.e., the events triggering resource transfers), and the

probability that the LRU block belongs to thread i, lrui (i.e., the rate of inter-thread replacement per cache

miss). Figure 6 shows ∆ for a two-program workload. From this “flow equation,” we can solve for thread i’s

cache allocation, Ai, in steady state (∆ = 0) if we make the simplifying assumption that lrui = Ai

C
, where

C is the total cache capacity. Figure 6 shows A1 and A2 in the two-program case.2

In Figure 6, we see LRU cache allocation is determined by the balance of inter-thread replacement rates

between programs. Hence, cache allocation can be changed by tipping this balance. PR does this by

altering replacement decisions. Rather than always replace the global LRU block, on certain cache misses,

PR replaces the LRU block belonging to a different thread probabilistically. By tuning the probability for

deviating from the LRU choice, the rate of inter-thread replacements can be modulated.

Because PR works by tuning the rate of inter-thread replacements, it can effectively support different

levels of cache interference. During low cache interference, coarse-grain interleaving occurs, so there are

very few inter-thread replacements. In this case, PR is activated infrequently, and reverts to LRU-like, thus

enabling LRU’s flexible sharing benefit. During high cache interference, fine-grain interleaving occurs, so

there are a large number of inter-thread replacements. In this case, PR is activated frequently, and provides

explicit isolation control. Later, Section 4 will give more insight into how PR works and performs.
2Note, we also assume A1 + A2 = C.

8

3 Memory Reference Interleaving Study

Having presented our insights qualitatively, we now perform quantitative studies. This section evaluates

the impact of memory reference interleaving on the performance of different cache allocation policies. First,

we describe the allocation policies considered in our study. Then, we discuss experimental methodology.

Lastly, we present results.

3.1 Cache Partitioning Techniques

Besides the basic LRU policy, our study considers two cache partitioning techniques: a recent technique,

called utility-based cache partitioning (UCP) [1], and an ideal cache partitioner, which we call iPART.

UCP and iPART perform partitioning dynamically, as shown in Figure 7. CMP execution is divided into

fixed time intervals, called epochs. At the beginning of each epoch, a partitioning of the cache is selected

across threads. Both UCP and iPART perform way partitioning (see Section 2), so each thread is allocated

some number of cache ways. During execution in the epoch, the cache replacement logic enforces the way

partitioning. This process repeats for every epoch until the workload is completed.

UCP and iPART differ in how they select the partitionings. Like most partitioning techniques, UCP

computes partitionings from SDPs (see Section 2) acquired on-line using special profiling hardware, called

utility monitors (UMON). Two UMON profilers have been proposed [1]: UMON-global profiles SDPs exactly

but incurs a very high hardware cost, while UMON-dss uses sampling to reduce the hardware cost but with

some loss in profiling accuracy. Our UCP implementation employs UMON-global. At the beginning of each

epoch, UCP analyzes the SDPs profiled for each thread from the previous epoch, and computes the best

partitioning. Our UCP implementation analyzes SDPs for all possible partitionings at every epoch (the

analysis is performed in hardware at zero runtime cost). Although very aggressive, we consider our UCP

implementation representative of state-of-the-art cache partitioners.

iPART is an ideal technique that omnisciently selects the best partitioning every epoch. iPART is phys-

ically unrealizable, but can be studied for a limited number of cases via simulation (see Section 3.2). Our

simulator checkpoints the entire CMP state at the beginning of each epoch from which it simulates every

possible partitioning of the cache for 1 epoch. Before each exhaustive trial, the simulator rolls back to the

9

Epochi Epochi+1 Epochi+2
CMP execution
timeline

epoch size

...

Possible
partitionings

Best
partitioningsCa

ch
e

...Se
le

ct
 P

ar
tit

io
ns

Se
le

ct
 P

ar
tit

io
ns

Se
le

ct
 P

ar
tit

io
ns

Se
le

ct
 P

ar
tit

io
ns

Pa
rti

tio
ni

ng
Figure 7. Epoch-based dynamic cache partitioning.

checkpoint so that every trial begins from the same architectural point. After trying all partitionings, the

best-performing one is identified, and the simulator advances to the next epoch using this partitioning. At

the end of the simulation, the cumulative execution time for the best partitionings is the execution time of

the workload, while the overhead for all the exhaustive trials is ignored. iPART represents an upper bound

on cache partitioning performance.

3.2 Experimental Methodology

We use M5 [11], a cycle-accurate event-driven simulator, to quantify the performance of different cache

allocation policies. We configured M5 to model both a dual-core and quad-core system. Our cores are

single-threaded 4-way out-of-order issue processors with an 128-entry RUU and a 64-entry LSQ. Each core

also employs its own hybrid gshare/bimodal branch predictor. The on-chip memory hierarchy consists of

private L1 caches split between instructions and data, each 32-Kbyte in size and 2-way set associative; the

L1 caches are connected to a shared L2 cache that is 1-Mbyte (2-Mbytes) in size and 8-way (16-way) set

associative for the dual-core (quad-core) system. The latency to the L1s, L2, and main memory is 2, 10,

and 200 cycles, respectively. Table 1 lists the detailed simulator parameters.

We apply cache partitioning to the shared L2 cache. To model UCP, we modified M5 to implement

the UMON-global profiler for acquiring SDPs, as well as the analysis to determine the partitioning from

the SDPs. To model iPART, we modified M5 to acquire simulator checkpoints every epoch, enabling the

checkpoint-based simulation methodology discussed in Section 3.1. In each epoch, we try all possible allo-

cations of the 8 ways in our L2 cache to different threads. While 2-program workloads only require trying

7 allocations (each program is allocated at least 1 cache way), simulations become prohibitive for larger

workloads (e.g., there are 455 different allocations per epoch for 4 threads). Due to the combinatorial num-

10

Processor Parameters Memory Parameters
Bandwidth 4-Fetch, 4-Issue, 4-Commit IL1 32KB, 64B block, 2 way, 2 cycles
Queue size 32-IFQ, 80-Int IQ, 80-FP IQ, 256-LSQ DL1 32KB, 64B block, 2 way, 2 cycles

Rename reg / ROB 256-Int, 256-FP / 128 entry UL2-2core 1MB, 64B block, 8 way, 10 cycles
Functional unit 6-Int Add, 3-Int Mul/Div, 4-Mem Port UL2-4core 2MB, 64B block, 16 way, 10 cycles

3-FP Add, 3-FP Mul/Div Memory 200 cycles (6 cycle bw)
Branch Predictor

Branch predictor Hybrid 8192-entry gshare/ Meta table 8192
2048-entry Bimod BTB/RAS 2048 4-way / 64

Table 1. Simulator parameters.

ber of allocations, we only simulate iPART for 2-program workloads. Our performance objective is average

weighted IPC (WIPC) [12]. This is the metric we optimize when searching for the best partitioning, as well

as the metric we report in our results. For both UCP and iPART, the epoch size is 1 million cycles, which

is comparable to what’s used in other dynamic cache partitioning techniques.

To drive our simulations, we employ multiprogrammed workloads created from the complete set of 26

SPEC CPU2000 benchmarks shown in Table 2. Many of our results are demonstrated on 2-program work-

loads: we formed all possible pairs of SPEC benchmarks–in total, 325 workloads. To verify our insights on

larger systems, we also created 13 4-program workloads, which are listed in Table 3.3 For the benchmarks,

we use the pre-compiled Alpha binaries provided with the SimpleScalar tools [13] which have been built

with the highest level of compiler optimization.4 All our benchmarks use the reference input set. Before

performing our detailed simulations, we fast forward the benchmarks in each workload to their representa-

tive simulation regions; the amount of fast forwarding is reported in the columns labeled “Skip” of Table 2.

These were determined by SimPoint [14], and are posted on the SimPoint website.5 After fast forwarding,

detailed simulation is turned on, and the workload is simulated for 500 million cycles (for iPART, this does

not include the exhaustive partitioning trials). On average, we simulate over 1 and 2 billion instructions for

the 2- and 4-program workloads, respectively.

Finally, in addition to measuring performance, we also analyze memory reference interleaving. For some

of these experiments, we use trace-driven simulation. We instrumented memory reference tracing in M5,

and ran all of our workloads on the instrumented simulator assuming an LRU policy. Because our traces

collectively consume significant disk storage, we acquire traces over a smaller simulation window of 100M

3In creating the 4-thread workloads, we ensured that each benchmark appears in 2 workloads.
4The binaries we used are available at http://www.simplescalar.com/benchmarks.html.
5Simulation regions we use are published at http://www-cse.ucsd.edu/ calder/simpoint/multiple-standard-simpoints.htm.

11

App Type Skip App Type Skip App Type Skip App Type Skip
applu FP 187.3B mgrid FP 135.2B apsi FP 279.2B sixtrack FP 299.1B
bzip2 Int 67.9B swim FP 20.2B art FP 14B twolf Int 30.8B
equake FP 26.3B wupwise FP 272.1B facerec FP 111.8B vpr Int 60.0B
fma3d FP 40.0B eon Int 7.8B galgel FP 14B gzip Int 4.2B
gap Int 8.3B perlbmk Int 35.2B gcc Int 2.1B vortex Int 2.5B
lucas FP 2.5B crafty Int 177.3B mcf Int 14.8B
mesa FP 49.1B ammp FP 4.8B parser Int 66.3B

Table 2. SPEC CPU2000 benchmarks used to drive our study (B = Billion).

ammp-applu-gcc-wupwise equake-galgel-mcf-sixtrack apsi-gcc-ammp-swim bzip2-art-lucas-crafty
apsi-bzip2-swim-vpr perlbmk-twolf-vortex-wupwise eon-sixtrack-facerec-mgrid gap-mesa-gzip-lucas
art-vortex-facerec-fma3d eon-mcf-perlbmk-vpr applu-fma3d-galgel-equake gzip-mesa-parser-gap
crafty-parser-mgrid-twolf

Table 3. 4-program workloads used in the evaluation.

cycles rather than the 500M cycles used for our performance simulations. After acquiring the traces, we

replay them on a cache simulator that models LRU and iPART. For iPART, the exhaustive search technique

looks for the partitioning that minimizes cache misses rather than WIPC.

3.3 Performance Results

We begin by comparing the performance of cache partitioning and LRU. In particular, we study whether

workloads perform best using partitioning instead of LRU, or vice versa (we refer to these as “partitioning

workloads” and “LRU workloads,” respectively). Figure 8 studies our 2-thread workloads, comparing iPART

against LRU. Out of the 325 2-thread workloads, 109 (37.5%) do not show any appreciable performance

difference (≤ 1%) between iPART and LRU, as shown by the “PART = LRU” bar in Figure 8. In these

workloads, the allocation policy is irrelevant, for example, because the working sets of both benchmarks

fit in cache. Of the remaining 216 workloads where performance is sensitive to the allocation policy, 154

(71%) are partitioning workloads while 62 (29%) are LRU workloads, as shown by the last two bars in

Figure 8. Because there are a larger number of partitioning workloads, cache partitioning outperforms LRU

overall. Figure 9 reports the WIPC of LRU and iPART averaged across the 216 policy-sensitive workloads.

In Figure 9, we see iPART holds a 3.73% advantage over LRU on average. Nonetheless, Figure 8 shows

there exists a mixture of partitioning and LRU workloads, a result consistent with previous work.

Figure 10 studies our 4-thread workloads by comparing UCP against LRU (since we cannot simulate

iPART for 4 threads). The graph reports the WIPC of UCP normalized to the WIPC of LRU. Looking at

the UCP bars in Figure 10, we see every workload but one (apsi-gcc-ammp-swim) is a partitioning workload.

12

| | | | ||0

|20

|40

|60

|80

|100

|120

|140

|160

Total:

PART = LRU Partitioning LRU

 325 Workloads

Workloads Workloads

Figure 8. LRU and partition-

ing workload breakdown (2-

thread workloads).

| | | ||0.95

|0.96

|0.97

|0.98

|0.99

|1.00

|1.01

|1.02

|1.03

|1.04

LRU iPART

Figure 9. Nor-

malized WIPC

(2-thread

workloads).

0.9

0.95

1

1.05

1.1

1.15

1.2

aapw absv avff cpmt egms gmgl empv agas esfm afge balc ptvw gmpg gmean

UCP PR

Figure 10. Normalized WIPC for UCP and PR

(4-thread workloads).

This permits UCP to outperform LRU by 2.9% on average. (Note, iPART would achieve an even larger gain

over LRU). These results suggest the frequency of partitioning workloads increases with thread count.

Having identified the partitioning and LRU workloads, we now study policy sensitivity across different

cache sets within the same workload–i.e., we differentiate “partitioning sets” from “LRU sets.” To facilitate

this study, we use trace-driven simulation, as described in Section 3.2. (Although event-driven simulation is

more accurate, traces fix memory ordering, and thus permit us to correlate the performance study in this

section to the memory interleaving study in the next section.) For each cache set and for each epoch in

a workload’s execution, we count the number of cache misses incurred by LRU and cache partitioning. If

partitioning achieves a lower miss count, we label the set as a partitioning set. Otherwise, if LRU achieves

a lower miss count, we label the set as an LRU set.

The first two rows in Table 4 report the percentage of cache misses that occur in partitioning sets ver-

sus LRU sets, broken down by workload type: the first column reports percentages averaged across the

partitioning workloads, while the second column reports percentages averaged across the LRU workloads.

Table 4 shows partitioning workloads incur 72.0% of their misses in partitioning sets, while LRU workloads

incur 78.4% of their misses in LRU sets. In other words, the dominant preference at the cache set level

determines whether the workload prefers partitioning or LRU overall. A more surprising result, however, is

regardless of the workload policy preference, there exists a non-trivial number of cache sets that prefer the

other policy: 28.0% and 21.6% of cache misses occur in LRU and partitioning sets for partitioning and LRU

workloads, respectively. This demonstrates an important point: the preference for partitioning or LRU not

only varies across workloads, it also varies across cache sets within a single workload.

13

Partitioning Workloads LRU Workloads
Misses in Partitioning Sets 72.0% 21.6%

Misses in LRU Sets 28.0% 78.4%

Table 4. Percentage of misses incurred in LRU and partitioning sets for partitioning and LRU workloads.
Spatial Coarse-Grain Fine-Grain

2-Thread LRU Workloads 56.2% 22.2% 21.6%
2-Thread Partitioning Workloads 17.3% 10.7% 72.0%
4-Thread Partitioning Workloads 3.9% 5.6% 90.5%

Table 5. Percentage of memory references performed in spatially isolated, coarse-grain interleaved (temporally

isolated), and fine-grain interleaved sets for 2-core/4-core LRU/partitioning workloads.

3.4 Memory Interleaving Results

We now investigate the connection between memory reference interleaving and partitioning / LRU per-

formance. In particular, we measure the degree of spatial and temporal isolation of memory references to

determine their interleaving granularity, and hence, the extent to which they interfere. Then, we correlate

the observed interleaving granularity to the preference for partitioning or LRU. Our study is performed on

the memory traces used in the previous section. While we consider all 4-thread workloads, for the 2-thread

workloads, we only consider the 216 identified in Figure 8 as being policy sensitive.

To study spatial isolation, we examine the memory references performed to each set within each epoch.

If 100% of the memory references from each “set-epoch” are performed by a single thread, we say the

references are spatially isolated. Across all our workloads, we identified some 450,000 set-epochs in which

spatial isolation occurs. In all of these set-epochs, we find LRU outperforms partitioning (i.e., the set-epochs

occur entirely in the LRU sets from Table 4). As discussed in Sections 2.1 and 2.2, spatially isolated memory

references retain all of their intra-thread locality. Due to the lack of cache interference, performance is best

under flexible cache sharing. Our results confirm LRU is always better than partitioning for the spatial

isolation case.

How significant is spatial isolation? The second column of Table 5, labeled “Spatial,” reports the percent-

age of memory references in different workloads that are spatially isolated. Table 5 shows spatial isolation

occurs frequently. For the 2-thread workloads, it accounts for 56.2% and 17.3% of memory references in the

LRU and partitioning workloads, respectively. For the 4-thread workloads, it accounts for fewer memory

references, 3.9%, in the partitioning workloads.6

6Table 5 doesn’t report results for 4-thread LRU workloads since there’s only one of them

14

0

5

10

15

20

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 11. Average per-thread reference run-

length sorted by partitioning’s gain over LRU.

a). Aggressor Cache Miss:
LRU = tid replace CBLRU

 otherwise replace CBLRU

LRU != tid replace CBtid with prob ptid

b). Non-Aggressor Cache Miss:
LRU = tid replace CB!tid with prob ptid otherwise replace CBLRU
LRU != tid replace CBLRU

LRU: thread ID of owner

tid: thread ID of cache-

CBi: most LRU cache block

ptid: replacement probability

CB!tid: next most LRU cache

of LRU cache block

missing thread

belonging to thread i

block not belonging
to thread tid

for thread tid

Figure 12. The PR policy for explicitly controlling

cache allocation.

Next, we study temporal isolation. For the memory references that are not spatially isolated, inter-thread

reference interleaving occurs. We characterize the granularity of this interleaving by measuring the average

per-thread reference runlength, i.e. the number of consecutive memory references a thread performs before

another thread performs an interleaving reference. For each set, we exclude the set-epochs containing spa-

tially isolated memory references, and compute the average runlength for each thread among the remaining

(interleaving) references. We then average the runlengths across all the sets to obtain a single runlength

value for the workload. All averages use the geometric mean.

Figure 11 plots the runlength value (Y-axis) for each workload (X-axis), with workloads sorted in ascending

order of partitioning’s benefit from left to right (i.e., from largest gain of LRU over partitioning to largest

gain of partitioning over LRU). The vertical line separates the LRU and partitioning workloads. As Figure 11

shows, there is a strong correlation between runlength and the preference for partitioning or LRU. At large

runlengths (coarse-grain interleaving / temporal isolation), LRU usually outperforms partitioning, while at

small runlengths (fine-grain interleaving / no temporal isolation), partitioning usually outperforms LRU.

In particular, a runlength of 7.4 correctly classifies the partitioning and LRU workloads 89% of the time.

As discussed in Sections 2.1 and 2.2, interleaving granularity determines cache interference, and hence, the

efficacy of different allocation policies. Coarse-grain interleaving makes flexible cache sharing important

while fine-grain interleaving makes explicit cache allocation important. Our results confirm LRU is better

in the coarse-grain case; otherwise, partitioning is better.

How significant is temporal isolation? In Table 5, the “Coarse-Grain” column reports the percentage

15

of memory references participating in runs with length ≥ 7.4, while the “Fine-Grain” column reports the

percentage of memory references participating in runs with length < 7.4. Table 5 shows temporal isola-

tion (coarse-grain interleaving) occurs fairly frequently. For the 2-thread workloads, it accounts for 22.2%

and 10.7% of memory references in the LRU and partitioning workloads, respectively. For the 4-thread

partitioning workloads, it accounts for fewer references, 5.6%.

4 Probabilistic Replacement

This section presents probabilistic replacement (PR) in detail. Section 4.1 elaborates on the mechanism

for providing allocation control from Section 2.3. Then, Section 4.2 describes an on-line technique for

determining the parameters required by the PR mechanism. Finally, Section 4.3 evaluates PR.

4.1 Controlling Resource Transfer Rates

As discussed in Section 2.3, PR controls the inter-thread replacement rate between simultaneous threads.

For workloads with frequent inter-thread replacements (due to fine-grain interleaving), LRU does not allocate

cache resources to threads effectively, as discussed in Section 2.1. Typically, some threads are over-allocated,

thus negatively impacting other threads. PR identifies the over-allocated threads, which we call “aggressors,”

and uses probabilistic replacement to reduce their allocation.

Figure 12 illustrates PR. On a cache miss by an aggressor thread tid (Figure 12a), if the LRU block

belongs to tid, then it is replaced as normal. However, if the LRU block belongs to another thread,

then with probability, ptid, the most LRU block belonging to tid is replaced instead. This reduces the

rate at which aggressor tid takes blocks away from other threads. On a cache miss by a non-aggressor

thread tid (Figure 12b), if the LRU block does not belong to tid, then it is replaced as normal. However,

if the LRU block belongs to tid, then with probability, ptid, the most LRU block not belonging to tid is

replaced instead. This increases the rate at which non-aggressor tid takes blocks away from other (hopefully

aggressor) threads. Together, the replacement algorithms in Figures 12a and b reduce the cache allocation

of aggressor threads while increasing the cache allocation of non-aggressor threads.

Figure 13 shows the cache allocation control provided by PR on the ammp-applu workload. The experi-

ment was performed on the M5 simulator from Section 3.2 modified to implement PR. In Figure 13, we plot

the fraction of cache allocated to ammp as a function of time (applu receives the remaining cache). The

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

am
m

p
ca

ch
e

al
lo

ca
tio

n

ref sequence

Ptid = 1.00
Ptid = 0.99
Ptid = 0.96
Ptid = 0.91
Ptid = 0.84
Ptid = 0.75
Ptid = 0.50
Ptid = 0.00

Figure 13. Cache allocation un-

der PR for ammp-applu.

main() {
 while (1) {
 Sample();
 do {
 do_epoch(p1, p2, ..., pT);
 } while (!NewPhase());
 }
}

/* T = number of threads */
/* wipci = multithread_IPCi / singlethread_IPCi */
/* WIPC = wipci */
/* do_epoch(p1, ..., pT): execute 1 epoch using pi’s */
/* NewPhase(): true if wipci order changes, else false */

Σ

Sample() {
 WIPCLRU = do_epoch(0, ..., 0);
 for (i = 0; i < T; i ++) {
 WIPCi+ = do_epoch(0, ... +0.5 ..., 0);
 if (WIPCi+ > WIPCLRU) {
 pi = +0.5;
 WIPCi++ = do_epoch(0, ... +0.99 ..., 0);
 if (WIPCi++ > WIPCi+) pi = +0.99;
 continue;}
 WIPCi- = do_epoch(0, ... -0.5 ..., 0);
 if (WIPCi- > WIPCLRU) {
 pi = -0.5;
 WIPCi-- = do_epoch(0, ... -0.99 ..., 0);
 if (WIPCi-- > WIPCi-) pi = -0.99;}
 }
}

Figure 14. Sample-based algorithm for identifying aggressor

threads, and picking pi values.

curves show cache allocation for different ptid between 0 and 0.99. (Note, PR defaults to LRU for ptid = 0).

In the ammp-applu workload, applu is the aggressor. So, as pr increases, applu’s cache allocation is reduced.

Notice, the allocation boundary is not fixed–it ebbs and flows as programs request resources over time, just

like in LRU. In fact, if either ammp or applu were to stop requesting resources, the other could take over

the entire cache. Yet, explicit cache allocation is achieved during simultaneous execution by controlling the

rate at which the boundary can move.

4.2 On-Line Sampling Algorithm

PR requires identifying the workload’s threads that are aggressors, and then choosing the per-thread

replacement probabilities, pi, to achieve the best performance. We use on-line sampling to select these PR

parameters. Figure 14 shows the pseudocode for our sample-based technique. The algorithm alternates

between two operation modes, as shown by the “main” function in Figure 14. Normally, it executes epochs

using the current pi values (the “do epoch” function). When a workload phase change occurs, the algorithm

transitions to a sampling mode to determine new pi values (the “Sample” function). To detect phase changes,

the algorithm monitors the weighted IPC of each thread, wipci, and assumes a phase change anytime the

relative magnitude of the wipci’s change (the “NewPhase” function). By alternating between execution and

sampling modes, the algorithm continuously adapts the PR parameters.

In the sampling mode, the algorithm first executes 1 epoch using LRU (pi = 0, ∀i). Then, the algorithm

considers each thread in the workload one at a time to determine its pi value. While pi can take on any

value between 0 and 1, we only permit 0, 0.5, and 0.99 to mitigate sampling overhead. (Trying too many

17

samples reduces performance since each sample can potentially perform poorly). Since pi = 0 is tried during

the LRU sample, the algorithm only needs to try pi = 0.5 and pi = 0.99, once assuming the thread is an

aggressor, and a second time assuming the thread is a non-aggressor (indicated as +0.5/+0.99 and -0.5/-

0.99, respectively, in Figure 14). After sampling, the thread’s pi is set accordingly, and the algorithm moves

onto the next thread. In total, the algorithm performs at most 4 × T + 1 samples, where T is the number

of threads. Each sample lasts 1 epoch.

Implementation Cost. PR requires supporting the probabilistic replacement mechanism and the sampling

algorithm. Probabilistic replacement requires maintaining a global LRU list and a per-thread LRU list per

cache set (similar hardware is also required for partitioning). In addition, it requires a random number

generator, and a comparator to determine if the generated random number meets a pi threshold. The

randomization logic is only accessed on cache misses, so it is off the hit path. We must also store a single

pi threshold value per thread. The sampling algorithm can be implemented in a software handler, invoked

once each epoch. Given epochs are 1M cycles, we believe the runtime cost would be negligible. We do not

model this overhead in our PR evaluation.

4.3 PR Performance

We modified our M5 simulator to implement the PR policy and sampling algorithm presented in Sec-

tions 4.1 and 4.2. Then, we evaluated PR on our 2-thread and 4-thread workloads. These experiments use

the same 500M-cycle simulation windows used in Section 3.3, except the first few epochs are not timed to

permit our sampling algorithm to determine the initial aggressor threads and pi values.

The matrix in Figure 15 presents our detailed PR results for the 2-thread workloads. Each matrix

element reports PR’s percentage gain over iPART (top value) and LRU (bottom value) under the WIPC

metric for a single workload. (The workload’s benchmarks are specified by the matrix element’s row and

column). Positive values indicate PR outperforms LRU/iPART, while negative values indicate LRU/iPART

outperform PR. Empty matrix elements denote policy-insensitive workloads–i.e., the 109 “PART = LRU”

workloads in Figure 8. The matrix shows PR is often the better technique. Out of the 216 policy-sensitive

workloads, PR outperforms LRU and iPART in 215 and 140 workloads, respectively.

18

applu 0.5%

13.2%

apsi 6.2% -0.2%

0.0% 0.9%

art -2.9% 3.4% 9.5%

18.7% 5.6% 0.0%

bzip2 3.3% 1.4% 4.8% -0.6%

0.0% 9.7% 0.0% 10.0%

crafty 1.7% 5.2% -3.6%

9.3% 0.0% 5.4%

eon 0.1% -0.1%

3.6% 5.2%

equake -2.2% -3.8% -1.8%

0.0% 0.0% 0.4%

facerec 1.7% -1.4% -1.5%

1.0% 0.0% 0.0%

fma3d 0.5% -1.3% 3.6% 1.0% 0.5%

1.6% 0.0% 0.0% 2.2% 2.6%

galgel -1.4% 0.1% 2.8% 2.0% -2.4% -1.1% -2.2% 2.2%

0.0% 5.4% 0.0% 0.0% 1.9% 0.0% 0.0% 1.6%

gap 0.3% 1.5% 3.8% 0.8% 0.6% -1.5% -0.4% 2.8%

1.1% 0.0% 1.3% 3.6% 2.4% 0.1% 0.0% 4.4%

gcc 6.2% 9.0% 16.4% -3.6% 5.0% 10.7% 6.3% 4.1% 7.8% 9.3% 7.7% 9.4%

4.4% 29.8% 0.0% 5.9% 0.0% 0.0% 0.0% 14.0% 3.1% 7.3% 28.0% 7.9%

gzip -1.0% -0.9% 3.2% -3.6% -4.0% -1.5% -0.5% -3.7% -2.2% 3.1%

0.0% 14.0% 0.0% 13.7% 0.0% 0.0% 3.1% 1.0% 0.0% 0.0%

lucas 0.3% -1.0% 0.6% 3.5% 0.3% 0.7% 0.2% 3.0% 11.4% 0.1%

3.6% 0.0% 1.8% 3.5% 5.9% 5.7% 1.3% 7.3% 21.5% 7.5%

mcf 4.1% 2.6% 0.3% 1.1% 5.7% 2.4% 5.0% 2.6% 12.6% -2.4%

4.4% 1.6% 2.1% 1.0% 0.0% 2.7% 6.4% 3.8% 9.4% 0.0%

mesa -1.2% 2.0% -5.0% -1.0% 1.0% -0.8% -0.8% 8.0% 0.0% 2.6%

7.3% 0.0% 0.0% 0.0% 0.0% 0.3% 1.0% 2.4% 2.2% 0.0%

mgrid 0.2% 0.7% 4.1% 0.1% 1.2% 0.1% 2.0% 9.7% -0.5% 6.5% -1.1%

2.5% 2.9% 5.0% 5.6% 4.3% 1.6% 5.6% 35.7% 5.7% 0.0% 1.8%

parser -1.2% 1.1% 6.4% -5.1% -3.3% 1.3% -5.4% -1.9% 0.9% -1.7% -0.3% 2.5% 0.4% 0.3% 1.0%

0.0% 11.2% 0.0% 0.2% 0.0% 0.0% 2.6% 2.8% 6.4% 5.9% 6.0% 0.0% 11.5% 7.0% 10.6%

perlbmk 0.0% 3.0% -0.2% 0.0% 0.0% 0.0% 2.9% 0.0%

10.9% 0.0% 27.2% 1.5% 4.2% 3.9% 0.0% 1.4%

sixtrack 2.4% 0.5% 0.1% 1.6% 7.6% 0.0% 9.5%

0.0% 0.6% 1.0% 0.0% 0.0% 8.1%

swim -0.1% -1.3% 0.2% -0.6% -0.6% 2.9% -0.3% -2.9% -2.9% -1.7% -1.1% 1.3% 0.7% -4.6% -0.5% -6.8% -0.1% -0.2%

32.8% -1.1% 1.8% 7.9% 23.5% 12.7% 3.6% 1.0% 0.0% 6.4% 0.5% 36.6% 22.5% 0.5% 8.5% 0.0% 15.2% 17.4%

twolf 3.8% 0.3% 6.0% 0.7% 2.2% 5.2% 3.8% -4.2% 1.2% 2.2% -14.9% 1.4% 7.6% 1.5% 2.3% 1.8% 0.7% 8.0% 4.1% -2.2%

0.0% 25.5% 0.0% 6.8% 1.0% 0.0% 0.0% 14.1% 9.6% 14.5% 1.3% 13.1% 7.6% 23.2% 17.4% 0.0% 23.5% 0.0% 4.4% 31.0%

vortex -0.2% 7.1% -2.5% 2.2% -1.7% 0.0% -3.3% -1.1% 9.9% 0.3% 0.1% 2.5% 0.2% 7.4%

9.6% 0.0% 15.6% 0.0% 0.5% 1.8% 0.0% 0.0% 0.2% 6.3% 4.3% 0.0% 14.7% 0.0%

vpr 0.1% 6.5% -1.5% 0.3% 1.2% 1.3% -0.1% -0.7% 0.7% -2.5% 0.7% 2.9% -0.8% 0.7% 1.2% 0.3% 3.2% -2.6% -5.9% 1.7%

4.3% 0.0% 0.2% 0.0% 0.0% 0.2% 4.4% 1.2% 2.6% 0.6% 3.7% 0.0% 0.2% 5.8% 4.8% 4.6% 0.0% 6.6% 0.0% 0.0%

wupwise -1.4% -0.2% -0.2% 1.8% 8.5% -1.4% 0.0% -0.5% -2.3% 1.8% 0.7%

0.0% 1.6% 0.9% 3.2% 7.6% 0.7% 5.0% 0.0% 13.4% 2.8%

ammp applu apsi art bzip2 crafty eon equake facerec fma3d galgel gap gcc gzip lucas mcf mesa mgrid parser perlbmk sixtrack swim twolf vortex vpr

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

all workloads LRU workloads PART workloads

UCP iPART PR

Figure 15. Comparison of PR against LRU, UCP, and iPART on our 2-program workloads.

The bar graph in Figure 15 shows overall performance. In particular, the group of bars labeled “All

Workloads” reports the WIPC of iPART, UCP, and PR averaged across the 215 policy-sensitive workloads.7

The three bars are normalized to the WIPC achieved by LRU across the same 215 workloads. This bar

graph shows PR outperforms LRU and UCP by 4.86% and 3.15%, respectively. PR also outperforms iPART

by 1.09%. Although this is a modest margin, it is particularly significant given iPART represents the best

that conventional partitioning can do.

Figure 10 presents our PR results for the 4-thread workloads. The bars labeled “PR” report the WIPC

achieved by PR for each workload normalized to the WIPC achieved by LRU. Figure 10 shows PR outper-

forms LRU in 12 workloads, and matches it in 1. Overall, PR achieves an 5.77% gain over LRU. Comparing

the “PR” and “UCP” bars in Figure 10, we see PR outperforms UCP in 9 workloads while UCP outperforms

PR in 4 workloads. Overall, PR achieves a 2.84% gain over UCP.

7We ran UCP simulations across all 2-thread and 4-thread workloads even though Section 3.3 only reports the 4-thread
results.

19

2-Thread Workloads 4-Thread Workloads
PR vs Part PR vs LRU PR vs Part PR vs LRU

LRU Sets 15.66% 2.24% LRU Sets 2.83% 1.88%
Partitioning Sets -0.56% 1.93% Partitioning Sets 1.05% 4.38%

Table 6. Improvement in cache miss count achieved by PR over partitioning and LRU in the partitioning and LRU

sets for 2- and 4-thread workloads.

4.4 Analysis

To provide insight into PR’s performance advantage, we simulated PR on the same memory traces from

Section 3.4, and compare the miss count PR achieves against the misses incurred by LRU and partitioning.

Table 6 reports these results. In Table 6, the columns labeled “PR vs Part” and “PR vs LRU” report PR’s

cache miss improvement over partitioning and LRU, respectively, for 2- and 4-thread workloads (note, for

partitioning, the 2-thread workloads use iPART while the 4-thread workloads use UCP). The results are

broken down by cache set type: the top row shows PR’s improvement in the LRU sets while the bottom

row shows PR’s improvement in the partitioning sets. As discussed in Section 3.4, LRU and partitioning

sets exhibit different granularities of memory reference interleaving, and hence, different degrees of cache

interference. So, our results study PR’s effectiveness as cache interference varies.

The top row of Table 6 shows PR is quite effective in the LRU sets. For the 2-thread workloads, PR

improves miss count over partitioning and LRU by 15.66% and 2.24%, respectively, and for the 4-thread

workloads, PR improves miss count over partitioning and LRU by 2.83% and 1.88%, respectively. LRU sets

exhibit coarse-grain interleaving (low cache interference) due to spatial and temporal isolation of memory

references. In this case, inter-thread replacements are infrequent, so PR acts like LRU and permits threads

to flexibly share the cache. In contrast, cache partitioning enforces a fixed boundary in the cache, and

sacrifices flexible sharing. It pays a particularly high price for this in the 2-thread case where isolation,

especially spatial, is highly prevalent, as shown in Section 3.4. Not only does PR outperform partitioning in

the LRU sets, it also slightly outperforms LRU as well. Because PR favors non-aggressor threads, it tends to

install them into the cache faster than LRU. This can provide a performance boost anytime a non-aggressor

thread performs a burst of references.

The bottom row of Table 6 shows PR is also effective in the partitioning sets. For the 2-thread workloads,

20

PR essentially matches the miss count compared to partitioning (a degradation of 0.56%) and improves

the miss count over LRU by 1.93%. For the 4-thread workloads, PR improves miss count over partitioning

and LRU by 1.05% and 4.38%, respectively. Partitioning sets exhibit fine-grain interleaving (high cache

interference) due to lack of spatial and temporal isolation. In this case, inter-thread replacements are

frequent, so PR limits the aggressor threads via probabilistic replacement, providing spatial isolation between

threads’ working sets, like partitioning does. In contrast, LRU over-allocates the aggressor threads, and

performs poorly. Not only does PR outperform LRU in the partitioning sets, it also slightly outperforms

partitioning for the 4-thread workloads. As illustrated in Figure 1, partitioning pessimistically sacrifices all

memory references with stack distance beyond the partition boundary. Despite fine-grain interleaving, we

find references with stack distance slightly beyond the partition boundary can often coexist. In many cases,

PR permits these short-stack references to flexibly share the cache, thus outperforming partitioning.

PR’s improvements in Table 6 for LRU and partitioning cache sets translate into improvements at the

workload level. To illustrate this, we sub-set our performance results by workload type. The two groups

of bars in Figure 15, labeled “LRU Workloads” and “PART Workloads,” break down the performance of

the 203 policy-sensitive workloads into LRU and partitioning workload groups, respectively. These bars use

the same format as the “All Workloads” bars. Among LRU workloads, we see LRU outperforms UCP and

iPART by 6% and 3.5%, respectively, due to the dominance of LRU sets in these workloads. Because PR

effectively handles LRU sets, it achieves a 0.94% gain over LRU (as well as a 7.41% and 4.59% gain over

UCP and iPART, respectively). Among partitioning workloads, we see UCP and iPART outperform LRU

by 4.58% and 6.64%, respectively, due to the dominance of partitioning sets in these workloads. Because

PR effectively handles partitioning sets, it achieves a 1.71% gain over UCP (as well as a 6.36% gain over

LRU). Unfortunately, PR is slightly worse than iPART (by 0.35%) in the partitioning workloads.

5 Related Work

Previous research on CMP cache management has already noted partitioning and LRU are cache allocation

techniques that address different types of cache interference [2, 10]. However, prior art explains the cache

interference variation in terms of locality. For example, Moreto et al [10] measure per-thread locality, and

then uses the locality measurements to predict cache interference. Our work shows per-thread locality is

21

only part of the picture. In addition, how threads’ memory references map and interleave in the cache is

also extremely important in determining the efficacy of different allocation policies.

Because we analyze interleaving, our work is close to Chandra et al [15] who demonstrate that inter-thread

reference interleaving can degrade intra-thread locality. They develop a model based on interleaving proba-

bility to predict the miss rate of LRU given per-thread SDPs. Our work differs in that we use interleaving

analysis to reason about the performance of different cache allocation policies. To our knowledge, we are

the first to investigate interleaving’s impact on cache allocation.

Previous research has also investigated adapting the allocation policy to different levels of cache inter-

ference in each cache set. Adaptive set pinning [16] profiles cache sets exhibiting high interference, and

provides additional cache capacity to eliminate the conflicts in those hot sets. Cache-partitioning aware

replacement [17] profiles the utility of giving each thread 1 more cache block per set by using per-set shadow

tags, and drives partition selection using the profiles. Unfortunately, profiling the behavior in each cache set

can be costly given the large number of sets. In contrast, PR is a rate-based allocation mechanism that con-

trols cache allocation in proportion to the inter-thread replacement rate. Because inter-thread replacements

directly reflect cache interference in each set, there is no need for per-set profiling. Hence, PR provides a

simple way to achieve per-set adaptation.

Cooperative cache partitioning (CCP) [2] is a hybrid technique that switches between a partitioning-like

and LRU-like policy. Unfortunately, as our analysis shows, cache interference varies at the cache set level.

Hybrid techniques like CCP only adapt at the workload level, and thus miss opportunities for optimization

across cache sets. In contrast, PR can adapt at the per-set level.

Finally, a large body of research has studied cache partitioning [3, 1, 5, 4, 8, 6, 7, 9]. PR borrows from

all of this prior research in that it provides another form of cache allocation control. To our knowledge,

however, we are the first to propose a rate-based control mechanism, and to demonstrate its benefits.

6 Conclusion

This paper demonstrates the degree of cache interference a multiprogrammed workload exhibits is inti-

mately tied to the granularity of interleaving amongst inter-thread memory references. Coarse-grain inter-

leaving occurs when there is spatial and/or temporal isolation of threads’ memory references; otherwise,

22

fine-grain interleaving occurs. In addition to quantifying the degree of spatial and temporal isolation in

several 2- and 4-thread workloads, we also demonstrate LRU and cache partitioning’s efficacy is highly

correlated to the interleaving granularity, with coarse-grain and fine-grain interleaving preferring LRU and

partitioning, respectively. We show this correlation exists at the cache set level, as well as workload wide.

Motivated by our interleaving insights, we also develop probabilistic replacement (PR), a new cache allo-

cation policy. PR controls the rate at which inter-thread replacements transfer cache resources between

threads. Because PR is a rate-based technique, it applies allocation control in proportion to the degree of

cache interference. This permits adaptation to different sharing patterns across cache sets, as well as across

workloads.

References

[1] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches,”
in Proceedings of the International Symposium on Microarchitecture, 2006.

[2] J. Chang and G. S. Sohi, “Cooperative Cache Partitioning for Chip Multiprocessors,” in Proceedings of the International Conference on Supercomputing,
(Seattle, WA), June 2007.

[3] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, “Communist, Utilitarian, and Capitalist Cache Policies on CMPs: Caches as a Shared Resource,” in
Proceedings of the International Symposium on Parallel Architectures and Compilation Techniques, (Seattle, WA), September 2006.

[4] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning in a chip multiprocessor architecture,” in PACT ’04: Proceedings of the 13th

International Conference on Parallel Architectures and Compilation Techniques, (Washington, DC, USA), pp. 111–122, IEEE Computer Society, 2004.

[5] H. S. Stone, J. Turek, and J. L. Wolf, “Optimal Partitioning of Cache Memory,” IEEE Transactions on Computers, vol. 41, September 1992.

[6] G. E. Suh, S. Devadas, and L. Rudolph, “Analytical Cache Models with Applications to Cache Partitioning,” in Proceedings of the 15th International

Conference on Supercomputing, (Sorrento, Italy), 2001.

[7] G. E. Suh, S. Devadas, and L. Rudolph, “A New Memory Monitoring Scheme for Memory-Aware Scheduling and Partitioning,” in Proceedings of the

International Symposium on High Performance Computer Architecture, 2002.

[8] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic Cache Partitioning for Simultaneous Multithreading Systems,” in Proceedings of the 13th IASTED

International Conference on Parallel and Distributed Computing Systems, 2001.

[9] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic Partitioning of Shared Cache Memory,” The Journal of Supercomputing, vol. 28, no. 7-26, 2004.

[10] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero, “Explaining Dynamic Cache Partitioning Speed Ups,” IEEE Computer Architecture Letters, vol. 6,
2007.

[11] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt, “The M5 Simulator: Modeling Networked Systems,” IEEE Micro,
vol. 26, pp. 52–60, July/August 2006.

[12] A. Snavely, D. M. Tullsen, and G. Voelker, “Symbiotic Jobscheduling with Priorities for a Simultaneous Multithreading Processor,” in Proceedings of the

International Conference on Measurement and Modeling of Computer Systems, June 2002.

[13] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” CS TR 1342, University of Wisconsin-Madison, June 1997.

[14] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to find periodic behavior and simulation points in applications,” in Proceedings

of the 10th International Conference on Parallel Architectures and Compilation Techniques, September 2001.

[15] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting Inter-Thread Cache Contention on a Chip Multi-Processor Architecture,” in Proceedings of the

International Symposium on High Performance Computer Architecture, February 2005.

[16] S. Srikantaiah, M. Kandemir, and M. J. Irwin, “Adaptive Set Pinning: Managing Shared Caches in Chip Multiprocessors,” in Proceedings of the International

Conference on Architectural Support for Programming Languages and Operating Systems, (Seattle, WA), pp. 135–144, March 2008.

[17] H. Dybdahl, P. Stenstrom, and L. Natvig, “A Cache-Partitioning Aware Replacement Policy for Chip Multiprocessors,” in Proceedings of the Conference on

High Performance Computing, 2006.

23

