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Abstract—This paper describes our experience with profiling and optimizing physical locality for the distributed shared cache (DSC)
in Tilera’s Tile multicore processor. Our approach uses the Tile Processor’s hardware performance measurement counters (PMCs)
to acquire page-level access pattern profiles. A key problem we address is imprecise PMC interrupts. Our profiling tools use binary
analysis to correct for interrupt “skid,” thus pinpointing individual memory operations that incur remote DSC slice references and
permitting us to sample their access patterns. We use our access pattern profiles to drive page homing optimizations for both heap
and static data objects. Our experiments show we can improve physical locality for 5 out of 11 SPLASH2 benchmarks running on 32
cores, enabling 32.9%–77.9% of DSC references to target the local DSC slice. To our knowledge, this is the first work to demonstrate
page homing optimizations on a real system.

✦

1 Introduction

A S core count in multicore chips increases, on-chip cache
becomes a key determiner of performance. To keep up

with the on-chip parallelism, it is necessary to distribute the
cache across the chip and provide independent access to sep-
arate cache banks. A multicore in which the shared cache is
distributed among the processor’s cores is called a distributed
shared cache (DSC [1]) architecture. DSC references exhibit
non-uniform cost since data placed in a cache bank close to a
requesting core can be accessed more quickly than data placed
in a distant bank, even when the caches are coherent.

Higher performance can potentially be achieved on DSCs
by managing on-chip physical locality so that data are placed
in the cache banks closest to their referencing cores. Such
bank homing optimizations, which have been explored by prior
work, can be controlled either in hardware at cache-block
granularity [2], [3], [5], [8], [10], [12], [19] or in software at page
granularity [6], [9], [13], [14]. Hardware techniques typically
map the cache blocks on different banks based on memory
block addresses, while software techniques usually rely on the
operating system to home individual pages on different banks.

To our knowledge, this prior research was conducted on
simulators only. Studies on real processors are valuable because
they can highlight real-world issues (e.g., [15]). Such studies
have been lacking for homing optimizations because proces-
sors did not implement DSCs. But recently Tilera Corporation
has shipped many-core CPUs that use a tiled CMP architecture.
In these Tile Processors [11], the lowest level of cache employs
a cache-coherent DSC architecture. A typical Tile processor
DSC is composed of 64 independent cache ”slices” distributed
amongst the cores. Hardware maintains cache coherency, and
the operating system controls homing onto DSC slices at page
granularity. In this architecture, cache misses incur a variable
cache access latency, making homing optimizations relevant.

This paper presents our experience with improving physical
locality in the Tile Processor, making several contributions.
First, we present a novel technique for acquiring page-based
access pattern profiles which can be used to drive homing
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decisions [9], [13]. The profiles are gathered using the Tile Pro-
cessor’s hardware performance measurement counters (PMCs).
In particular, our solution corrects for the Tile Processor’s
imprecise PMC interrupts (an issue on many CPUs) to permit
sampling of individual memory instructions that access the
DSC. Second, we develop an optimization library that performs
page homing for both heap and static data objects, using our
access pattern profiles to place pages on the tile that accesses
them the most. Finally, we conduct experiments using pro-
grams from the SPLASH2 benchmark suite [18] that quantify
the effectiveness of our techniques. Along with our earlier
work [7], this study provides the first-ever demonstration of
page homing optimizations on an actual commercial CPU.

2 Access Pattern Profiles

Software page-based techniques require access pattern
information–i.e., the per-page distribution of references
performed by cores–to drive page homing decisions. This
section describes how access pattern profiles can be acquired
using hardware PMCs on Tile Processors.

2.1 Tile Processor

A typical Tile Processor, illustrated in Figure 1, consists of
a grid of 64 general-purpose VLIW cores interconnected by
multiple 2D mesh on-chip networks. Each core has its own
private split L1 cache, and a local L2 cache that acts as one
slice of a DSC. The core and its associated cache are connected
to the on-chip networks through a switch. The switch, core,
and cache form a tile. Cores can access their local L2 slice
with minimal latency, but incur increasingly higher latencies to
access more distant L2 slices due to inter-tile communication
across the switched interconnect.

Tile Processors provide several ways in which data can be
placed across the DSC caches, including on a per-page basis.
Every virtual memory page can be assigned its own home tile.
The home tile’s L2 cache is where cache blocks from the page
are cached on-chip. Hence, this permits flexible OS-controlled
distribution of data. Pages are 64KB each; the hardware TLBs
can support smaller pages, but the current OS cannot.

To enable measurement of low-level hardware events, the
Tile Processor supports 2 32-bit hardware performance mea-
surement counters per tile. Each hardware PMC can observe
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Fig. 1. A typical Tile Processor is composed of 64 tiles
one of 99 pre-defined hardware events at any moment in time.
These events monitor instruction execution in the cores, mem-
ory operations in the memory hierarchy, as well as traffic across
the on-chip network. The Tile Processor runs a Linux operating
system which supports OProfile for accessing the hardware
PMCs. In addition, we ported PAPI [16] and Perfmon2 [17],
two other standard PMC APIs, to the Tile Processor.1

(Note, some details about the Tile Processor have been
omitted in this section because they are not yet public).

2.2 Using PMCs to Profile Memory References

For every page in memory, we profile the number of references
each core makes to the page in the DSC, thus identifying
the most frequently referencing core(s). We only profile loads
because the Tile Processor does not support monitoring DSC
stores. In any case, stores write to a store buffer on a cache
miss and do not cause significant performance degradation in
the parallel programs we study.

The Tile Processor’s PMCs can count remote-read hardware
events–i.e., loads that miss in the local L1 cache and hit in a
remote L2 slice. Moreover, PMCs can deliver an interrupt after
a pre-set number of remote-read events. Each interrupt/sample
can identify the core performing the load, as well as the load
instruction involved (i.e., its program counter or PC). So, the
interrupt handler can probe the register containing the load’s
effective address and identify the referenced page. For each
benchmark, we perform separate profiling runs in which all
pages are homed on a spare tile not running any compute
threads, thus making all L2 accesses remote and allowing them
to be sampled by the remote-read event interrupts. After a large
number of samples, we can determine statistically the frequency
with which all pages in a program are referenced by each core.

One problem is the Tile Processor’s PMC interrupts are not
precise. After a PMC interrupt is signaled, the core keeps
executing. When the interrupt is actually serviced, the core
has executed past the event-triggering instruction, so the PC
sampled is not the load performing the DSC reference. Such
PMC sampling “skid” prevents pinpointing event-triggering
loads which is necessary to profile their access patterns.

Fortunately, it is possible to correct for sampling skid on
the Tile Processor due to the nature of its pipeline. The Tile
CPU employs a register file with presence bits [4] that allow
execution past cache-missing loads. Rather than the cache-
missing load stalling the pipeline, the first instruction to use the
load’s target register stalls, as illustrated in Figure 2. We find
the delay in signaling a PMC interrupt is larger than the def-
use distance for DSC referencing loads (we observe a def-to-use
of 1–20 VLIW instruction bundles), but smaller than the latency
for the remote L2 slice access. Hence, the PMC interrupt always
samples the instruction dependent on the event-triggering load.
(We verified this manually for a large number of cases).

While event-triggering loads cannot be directly profiled on
Tile Processors, they can be inferred from the sampled PCs via

1. The latest versions of PAPI are implemented on top of Perfmon2.
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dependences: an event-triggering load is the first load preced-
ing the sampled PC whose destination register matches one of
the sampled instruction’s source registers. We perform such
dependence analysis on the static program binary. Usually,
dependence analysis encounters the event-triggering load in
the same basic block as the sampled instruction; however, in
some cases, the event-triggering load resides in the basic block
preceding the block containing the sampled instruction.

2.3 Profiling Tools

Figure 3 illustrates the tools involved in profiling. We perform
two profiling runs to acquire the access pattern profiles. In the
first run, we use OProfile to collect the imprecisely sampled
PCs, and then use our own binary analysis tool to perform
the sampling skid correction analysis. From this analysis, we
build a table that associates the imprecise PCs with their
corresponding corrected PCs and the register containing the
effective address of the event-triggering load.

We use a modified version of PAPI to perform a second
profile run that acquires the access pattern profiles. On each
sampling interrupt, PAPI consults the table to get the effective
address register, probes the register to determine the referenced
page, and logs the sample (core ID and page number) in a
separate profile table. At the end of the second profiling run,
this profile table is output to the user.

In addition to profiling access patterns, we also log all calls
to malloc, the heap memory allocator, to associate pages in the
access pattern profiles to individual heap objects.

3 Page Homing Optimization

Once the access pattern profile and malloc log have been
acquired for a given program, subsequent executions of the
program can use them to drive page homing optimizations.
This section presents our optimizations.

3.1 Optimization Opportunities

Our page homing optimization tries to home heap and static
data memory region pages that are referenced primarily by
a single core on the tiles where they are referenced most
frequently. Figure 4 illustrates opportunities for doing this. In
Figure 4, we graph the access pattern profile for a 16-core
execution of Ocean from the SPLASH2 benchmarks [18]. Pages
are plotted along the X-axis while cores are plotted along the
Y-axis. The graph plots the normalized number of samples
acquired for each page from each core along the “Z-axis”
(extending out of the paper). Samples that are particularly large
are highlighted by the shaded peaks. In Figure 4, the pages
numbered 106 to 700 are referenced primarily by a single core.
These are the pages our optimization tries to explicitly home.

For the SPLASH2 benchmarks, we find there are two major
types of objects that can be optimized. The first type, distributed
arrays, is illustrated in Figure 4 by pages 148–274 and 274–442.
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Fig. 4. Part of example access pattern profile of a 16-core
execution of Ocean from the SPLASH2 benchmark suite.

Each of these is a single object (i.e., allocated by a single malloc
call), accessed by all the cores. But most of the per-core accesses
are destined to mutually exclusive and contiguous pages in the
object. They can be optimized by distributing pages in chunks
across neighboring tiles to match their diagonal access patterns.

The second type, privately accessed objects, is illustrated in
Figure 4 by pages 106–127 and 442–700. Here, each set of pages
that are referenced by the same core belongs to a separate
object. These objects can be optimized by homing all of their
pages on the tile where most of the memory references occur.

The remaining pages in Figure 4 are primarily accessed
by multiple cores. Our optimization does not try to improve
physical locality for such shared pages. Instead, we simply
distribute shared pages in round-robin fashion across tiles.
Note, Figure 4 only shows references in the parallel region.
Most pages are initialized by tile 0 at program startup (this is
true for all SPLASH2 benchmarks). Hence, a first-touch policy
would place all pages on tile 0, resulting in poor performance.

3.2 Homing Heap Pages

Page homing in the heap can be controlled via the Tile Pro-
cessor’s “mspace” abstraction. A Tilera mspace is essentially
a segment, with a particular homing policy for all pages
in the segment. We create multiple mspaces with different
homing policies tailored to the different heap objects and access
patterns described in Section 3.1. An optimization library is
provided to place heap objects in the appropriate mspace
according to each object’s profiled access pattern.

For privately accessed heap objects, our optimization library
creates one mspace per tile, with each mspace homing its
pages on a unique tile. For heap-based distributed arrays, our
optimization library creates an mspace that distributes pages
across tiles so that each portion of the distributed array resides
in its referencing core’s local tile. We set the chunking factor (the
number of contiguous pages to place on one tile before moving
onto the next tile) to be the ratio of the distributed array size
and the number of tiles in the machine times the page size.

In order to select the appropriate mspace for each allocated
heap object, our custom malloc function first matches the call to
its corresponding call of malloc in the malloc log, then allocates
the heap object on the corresponding mspace according to its
access pattern. If the object is not of type privately accessed
object or distributed array, the custom malloc function allocates
the object onto a default mspace that distributes the object’s
pages across tiles in round-robin fashion.

Note, the malloc log’s access pattern information is not tied
to a specific machine or data object size. For example, mal-
loc calls for privately accessed heap objects allocate “locally”
rather than to a hard-wired core ID. So, local allocation still
occurs even if core count changes. Moreover, malloc calls for
distributed arrays re-compute the chunking factor in each ex-
ecution. So, array distribution still occurs uniformly across all
the tiles even if core count and/or allocated array size change.
While not perfect, this approach increases the likelihood that

TABLE 1
SPLASH2 benchmarks with their input problem sizes.

Benchmark Input Benchmark Input

FFT 220 points Ocean 1026 grid
Barnes 16384 bodies Water-NS 1000 molecules
Cholesky tk17.O Water-SP 1000 molecules
Radix 2097152 keys Radiosity 7832 objects
LU 1024 matrix Raytrace ball4
FMM input.2048

pages are correctly placed for optimized runs employing a
different machine and/or problem size than the profile runs.

3.3 Homing Static Data Pages

Unlike heap objects, static data objects are allocated at compile
time, and are bound to a particular mspace. We use memory
mapping and unmapping to change the homing policy. We
first identify all pages in the static data region from the access
pattern profile that are referenced primarily by a single core.
Next, we copy the contents of these identified pages to an
external file. Then, we unmap the copied pages from the
program’s address space, and map into their place the copied
data from the external file using the mmap_mbind() system
call, which permits specifying a home tile. Hence, this permits
per-page homing control in the static data region.

4 Experimental Results

This section demonstrates the profiling and optimization tech-
niques discussed in Sections 2 and 3, and studies their benefits.

4.1 Experimental Methodology

We conduct experiments on a Tile Processor running the Linux
operating system from the Tilera MDE version 2.1. To drive
our study, we use the entire SPLASH2 benchmark suite [18]
except for volrend. We use tile-cc (the Tile Processor’s C
compiler) to compile the benchmarks with the highest level
of optimization. Table 1 lists the benchmarks and the input
problems we use in the experiments.

To quantify improvements, we compare the optimized and
unoptimized benchmarks. To obtain optimized benchmarks,
we first acquire access pattern profiles and malloc logs using
our profiling tools on 32-core executions. Then, we instrument
the benchmarks to call our optimization library routines and
to perform the homing optimizations for the static data region.
Lastly, we re-compile the benchmarks, linking them against our
optimization library. For the unoptimized benchmarks, we use
our optimization library to distribute all heap and static data
pages across tiles in round-robin fashion.

In our results, we report sampled page references at the DSC
level in the parallel region of each benchmark. The sampling
counts can be converted into page reference counts (at least
approximately) by multiplying by the sample frequency, 7000.
(This sampling frequency was determined experimentally for
SPLASH2. It may be necessary to tune it for other benchmarks.)

4.2 Physical Locality Results

Table 2 reports our page reference count results. In particular,
the 2nd and 3rd columns (labeled “Total”) report the number
of sampled page references in each benchmark’s profiling run
that are destined to the heap and static data memory regions.

The 4th and 5th columns (labeled “Baseline”) report the
number of sampled page references in the unoptimized bench-
marks that are destined to local L2 slices broken down into
heap and static data references, respectively. The 6th column
reports the percentage of the total sampled references that these
baseline local references represent–i.e. (% Total)Baseline =
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TABLE 2
Number of sampled page references to the heap and static data regions in total, that are destined to local L2 slices in the baseline

and optimized benchmarks, and that can be potentially optimized.
Total Baseline Optimized Potential

Heap Static Heap Static % Total Heap Static % Total Heap Static

FFT 5376 8387 289 536 6.0% 5372 536 42.9% 5376 0
Barnes 8197 11324 521 711 6.3% 521 7152 39.3% 246 6920
Cholesky 37361 6735 1890 389 5.2% 1907 389 5.2% 113 2
Radix 4299 79 276 5 6.4% 3404 5 77.9% 3425 15
LU 0 2 0 0 0% 0 0 0% 0 2
FMM 19667 123 1583 9 8.0% 1583 9 8.0% 19667 1
Ocean 90703 26030 5400 1387 5.8% 87857 1387 76.5% 88783 0
Water-NS 543 3211 22 190 5.6% 438 190 16.7% 543 0
Water-SP 415 0 1 0 0.2% 1 0 0.2% 415 0
Radiosity 4741 1824 430 68 7.6% 430 68 7.6% 192 259
Raytrace 30750 14580 1796 964 6.1% 1796 964 6.1% 5 0

(Heap+Static)Baseline

(Heap+Static)Total

× 100. This data shows the unoptimized
benchmarks exhibit poor physical locality. Only 5%–8% of all
DSC references are to local L2 slices.

Similarly, the 7th and 8th columns (labeled “Optimized”)
report the number of sampled page references in the optimized
benchmarks, and the 9th column reports the percentage of
these optimized local references. As this data shows, our
page homing optimizations improve physical locality for 5
benchmarks: FFT, Barnes, Radix, Ocean, and Water-NS. In these
benchmarks, 39.3%–77.9% of DSC references are to local L2
slices, a 6–12X increase over the baseline. For the remaining
6 benchmarks, our homing optimizations do not find many
pages to optimize–i.e., that are referenced primarily by a single
core–so the number of localized DSC references does not
change compared to the baseline.

The remaining (10th and 11th) columns report the number
of samples destined to heap and static data pages that are
referenced by no more than half the cores (16) in the profiling
runs. Since our homing optimization must place each page on
a specific tile, it is only effective for pages referenced by a small
number of cores. Hence, these sampled reference counts are a
good estimate for the potential physical locality improvement.

Comparing the “Potential” and “Optimized” results, we see
our optimizations capture most of the physical locality in the
SPLASH2 benchmarks–i.e., many of the optimized heap and
static data counts are close to the corresponding potential
counts. This suggests that for us to do substantially better, we
must create more opportunities. We notice many pages remain
unoptimized because they are shared by many cores. False
sharing is a major reason for this since the Tile Processor’s page
size is rather large, 64 KB. Our optimizations could potentially
become more effective if the page size were reduced.

5 Conclusions

This paper describes our experience with page-level homing
optimizations on a real system, Tilera’s Tile Processor running
a Linux OS. We show hardware PMCs can be used to acquire
page-level access pattern profiles. Moreover, we show that
binary analysis can be used to correct for interrupt skid–due
to imprecise PMC interrupts–to pinpoint individual memory
operations incurring remote-core references and sample their
access patterns. We find our page homing optimizations driven
by our access pattern profiles can improve physical locality
for 5 out of 11 SPLASH2 benchmarks, enabling 39.3%–77.9%
of DSC references to target the local L2 slice. In addition,
we find our homing optimizations already exploit most of
the potential physical locality in the SPLASH2 benchmarks.
Significant improvements can only come by creating more
opportunities for homing, perhaps by addressing false sharing
via smaller virtual memory pages.
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