
Memory Predecryption: Hiding the Latency Overhead of Memory Encryption

Brian Rogers, Yan Solihin Milos Prvulovic
Dept. of Electrical and Computer Engineering College of Computing

North Carolina State University Georgia Institute of Technology
{bmrogers,solihin}@eos.ncsu.edu milos@cc.gatech.edu

Abstract

Memory encryption has become a common approach to
providing a secure processing environment, but current
schemes suffer from extra performance and storage over-
heads. This paper presents predecryption as a method
of providing this security with less overhead by using
well-known prefetching techniques to retrieve data from
memory and perform decryption before it is needed by
the processor. Our results, tested mostly on SPEC 2000
benchmarks, show that using our predecryption scheme
can actually result in no increase in execution time de-
spite an extra 128 cycle decryption latency per memory
block access.

1. Introduction

Increasingly numerous and sophisticated security threats
are creating a growing need for processing environments
resistant to software piracy and security attacks. While
remote software-only attacks are receiving much of the
attention in this area, hardware attacks are also possible
and feasible, for example on the X-Box game console
where a bus or DRAM override can be accomplished by
inserting an inexpensive chip on the bus, allowing unau-
thorized playing of games [7]. Such violations of the
Digital Rights Management (DRM) policy can be very
costly - software piracy has cost the software industry
billions of dollars per year in recent years due to unau-
thorized copying of restricted software [9]. One promis-
ing solution for hardware-based attacks is to encrypt data
as it leaves the processor chip and decrypt it when it is
brought back on-chip.

Recent studies in computer architecture have proposed a
model referred to as the execute-only memory (XOM), as
a way to support copy and tamper resistant software com-
munication [6, 13, 14]. In XOM, application programs
and their data are stored encrypted in the main memory.
Unfortunately, as observed by other researchers, the per-
formance overhead of using memory encryption in this
way is very high, slowing down application programs by
up to 35% even when using a very simple encryption

algorithm that takes only 48 cycles to decrypt a cache
line [21]. This is because each memory access suffers
from decryption latency, which may take up to hundreds
of cycles using the popular AES algorithm.

To lower performance overheads, recently proposed
schemes rely on approximating one-time pad (OTP) en-
cryption [20, 21] to allow overlap between a mem-
ory access and decryption. In these schemes, memory
blocks are not directly encrypted using a strong key-
based scheme. Instead, the key is used to encrypt a
“unique identifier” (pad) of the block, obtained from the
block’s address and a sequence number. The resulting
pad for the block is then XORed with the plaintext of the
block to produce cyphertext. When the block is fetched
from memory, it is decrypted by recomputing its pad and
XORing it with the encrypted block. The fetch of an en-
crypted block from memory and the pad computation for
that block can be overlapped, hiding much of the latency
of encryption/decryption. However, this approach has a
significant drawback: the pad must be different each time
a block is encrypted [20, 21]. If a pad is reused and the
attacker knows, discovers, or guesses the plaintext of one
data block, it is a simple matter to recover the pad (by
XORing the known plaintext and its cyphertext) and use
it to decrypt all other blocks that used the same pad. In
memory systems, many locations have known or easily
guessable values (e.g. many are zeroes), so using the
same pad more than once is very risky. Because the ad-
dress of a data block remains constant, the uniqueness
of the pad for different versions of that block relies on
the sequence number used to generate the pad. Main-
taining such sequence numbers is a significant problem.
The sequence number is kept on a per-block basis, so the
OTP-like scheme must record the current sequence num-
ber for each block in memory. Pad generation cannot
begin until the block’s sequence number is fetched, so
most of the latency-hiding opportunity is lost unless se-
quence numbers are kept in fast and relatively large on-
chip storage. On-chip storage is still not sufficient for
sequence numbers of all blocks in memory, so storage
of sequence numbers also imposes a significant memory

ACM SIGARCH Computer Architecture News 27 Vol. 33, No. 1, March 2005

space overhead. Finally, when sequence numbers wrap
around, the encryption key must be changed to avoid us-
ing the same pads again. This requires re-encryption of
the entire memory, which is a significant overhead. The
frequency of wrap-arounds can be reduced by using large
sequence numbers, but then even more space is needed to
store them.

To avoid the complexities and disadvantages of OTP-
approximating schemes, in this paper we evaluate the
feasibility of using well-known latency-hiding prefetch-
ing techniques to minimize the overheads of memory
encryption. We augment the processor with a prefetch-
ing engine that predicts future cache misses, prefetches,
and decrypts them ahead of the processor’s requests. We
call this scheme predecryption. The prefetcher that we
use includes stream buffers [3, 5, 8, 11, 15, 17] and a
correlation prefetcher [1, 2, 10, 12, 17, 18]. Compared
to XOM and OTP, this approach has several benefits.
First, prefetching engines are already present in real sys-
tems [5, 8], so little extra hardware is needed, other than
tuning it to also hide the decryption latency. Further-
more, more advanced predictors will not only hide de-
cryption latency better, they may also improve perfor-
mance by also hiding memory latency. Second, prede-
cryption allows well-known encryption schemes, such as
AES, to be directly used to encrypt data in memory. In
contrast, OTP-like schemes hide decryption latency by
modifying the encryption scheme. Third, unlike OTP-
like schemes, predecryption does not use sequence num-
bers, so no memory space is needed for them and there
is no need to periodically re-encrypt the entire memory
when a sequence number wraps around. Finally, when
the data needs to be communicated to other devices, such
as other processors in a multiprocessor system, the key
needs to be passed to these devices once. In OTP-like
schemes, the sequence number needed to generate the
pad for a block must be communicated between devices
together with the encrypted block itself.

The paper is organized as follows: Section 2 discusses the
predecryption algorithm used and compares it with OTP,
Section 3 details the evaluation setup, Section 4 presents
and discusses the evaluation results, and Section 5 sum-
marizes our findings and conclusions.

2. Predecryption Mechanism

Figure 1 shows the mechanism for predecryption. When
an L2 cache line is replaced or flushed, it is encrypted be-
fore it is written back to the memory (Step 1a). A write-
back is typically not a latency-critical operation, there-
fore we do not attempt to hide the encryption latency. In-
stead, we mainly focus on hiding the decryption latency,
which affects time-critical fetches from memory into the

L2 cache upon an L2 cache miss. When an L2 cache miss
occurs, instead of requesting the line from memory, we
first check the predecryption buffer for a match (Step 1b).
If the missed line is found in the predecryption buffer, it is
moved to the L2 cache. Otherwise, the miss is forwarded
to the memory controller for fetching and to the prefether
(Step 2). The prefetcher’s stream buffers use the miss to
identify streams and predecrypt them. If the miss is not
identified as a part of a stream, the miss is forwarded to
the correlation prefetcher to record the address in its ta-
ble and make its prediction on future misses. Thus, the
correlation prefetcher only sees addresses that are not se-
quential. In this way, the correlation table can be smaller
because it is only used for “difficult” misses that can not
be handled by stream buffers. A similar optimization has
been used in past studies on prefetching [17, 18].

When the prefetcher observes a miss, its stream buffers
or its correlation prefetcher predict future miss(es) and
issue a predecryption request to the memory controller
(Step 3). When the main memory replies with data (Step
4), if it is a reply to a read/write miss, it is decrypted and
inserted into the L2 cache (Step 5a). If it is a reply to a
predecryption request, the data is decrypted and stored in
the predecryption buffer.

Corr.
PrefBuffers

Stream

L1

L2

Encryptor /
Decryptor

Memory Controller

Main Memory

1a: Writeback

4. Data
 Replies

 Replies

 Replies

1b: L2 miss

 Requests
3: Predecryption

2: Rd/Wr Miss

5a: Rd/Wr Miss

Proc

Chip Boundary

Buffer
Predec

5b: Predec

Figure 1: Predecryption mechanism for a proces-
sor with two levels of on-chip caches.

As long as the predecryption mechanism is able to pre-
dict far enough ahead, both the decryption latency and
the memory latency can be hidden. Therefore, we tune
the prefetcher to predict future misses far into the future.
To achieve that, we use deep stream buffers, with eight

ACM SIGARCH Computer Architecture News 28 Vol. 33, No. 1, March 2005

entries per buffer, and other standard features such as a
multiple-stream detection capability, double ∆ scheme,
and a heuristic to avoid storing overlapping streams [4].
For correlation prefetching, we use a replicated table or-
ganization that prefetches several levels of successors for
the current miss address [18].

2.1. Qualitative Comparison with OTP

Table 1 qualitatively compares the properties of our pre-
decryption scheme with encryption based on One-Time
Pad (OTP) approximation, which was previously pro-
posed [20, 21]. For a cache miss, in the best case sce-
nario, OTP finds the needed sequence number on chip
in the sequence number cache (SNC), and can overlap
pad generation latency with memory latency. The best
case for predecryption is when the requested line has al-
ready been fetched and decrypted into the predecryption
buffer, in which case predecryption completely hides de-
cryption and memory latencies. The worst-case latency
for OTP is when the sequence number is not found in
the SNC and needs to be fetched before decryption can
be performed, in which case the sequence number must
be retrieved from memory before pad generation can be-
gin. Therefore, the overall latency of the entire operation
is the sum of memory and pad generation (encryption)
latency. The worst-case latency for predecryption is the
same, because a cache line must be fetched and then de-
crypted before it can be used by the processor.

In terms of storage, OTP stores a sequence number for
each line, in the SNC on-chip, or off-chip. Predecryption
requires prediction information on-chip. If only stream
buffers are used, they occupy little storage space, in our
case 512 bytes to store information from multiple streams
and 16KB for their predecryption buffer. However, to
perform well a correlation table may need to be very
large, such as 1 MB used in past studies [18, 1, 2, 10, 12].
Reducing the size of the correlation table without sig-
nificantly affecting its effectiveness is a topic for future
work.

OTP also complicates communication with other proces-
sors in a multiprocessor environment and with other de-
vices. When an off-chip device accesses a datum, it needs
the encryption key and the sequence number. The se-
quence number is different for each line and must be
fetched from memory or, if the number is still in the SNC,
from the processor that last updated the line. This could
be a significant overhead, especially for parallel or I/O
intensive programs. In contrast, with predecryption ex-
ternal devices only need the key, which can be supplied
to them once. Therefore, predecryption has virtually no
additional run-time overhead for parallel and I/O inten-
sive programs.

Finally, it should be noted that OTP cache misses that
do not find their sequence number in the SNC cannot di-
rectly benefit from prefetching. Even if the cache miss
latency is hidden by prefetching, the sequence number of
the line still has to be fetched. Therefore, unless there
is a mechanism for predicting the next sequence number
that is used, OTP cannot benefit much from prefetching.
However, we will look into this issue in the future to pos-
sibly combine the advantages of both schemes.

Overall, in terms of best-case latency, on-chip and off-
chip storage overheads, and complexity, predecryption is
a very promising alternative to OTP-approximation en-
cryption schemes.

3. Evaluation Setup

To evaluate our approach, we use 18 applications, mostly
from Spec2000 [19]. Table 2 lists these applications
and their characteristics. We perform detailed execution-
driven simulation of a system whose relevant parameters
are shown in Table 3, together with descriptions of spe-
cific configurations used in our experimental evaluation.

The correlation table has 64K entries. Each entry con-
tains a tag of 11 bits, and multiple successors, where each
successor is stored as an offset to the current miss ad-
dress, and is encoded with 17 bits. Therefore, the total
table size is (64K × (11 + 4 × 17))/8 = 647Kbytes.

4. Evaluation

Figure 2 plots the execution time for each benchmark and
the average of all the benchmarks, when no encryption
is applied (NoEnc), when encryption is applied (Enc),
and when various predecryption schemes are applied
(Enc+Sbuff, Enc+CP, and Enc+CP+Sbuff). All bars are
normalized to the NoEnc case. The figure shows that on
average, adding a 128 cycle encryption/decryption delay
to all memory accesses increases the execution time by
21%. Predecryption with stream buffers (Enc+Sbuff) re-
duces this overhead to a little over 1%, whereas a cor-
relation predictor alone (Enc+CP) reduces this overhead
to 16%. A combination of both predecryption schemes
(Enc+CP+Sbuff) results in the same execution time as
in the NoEnc configuration. This result shows that, as
explained in Section 1, a predecryptor eliminates some
of the performance lost to memory encryption. However,
Figure 2 does not indicate what part of the miss latency is
hidden by predecryption: memory latency alone, or both
memory and decryption latency. Figure 3 helps answer
this question.

Figure 3 shows the execution time reduction due to
prefetching/predecryption in a system with or without
memory encryption. The first pair of bars in each
group shows the relative reduction in execution time

ACM SIGARCH Computer Architecture News 29 Vol. 33, No. 1, March 2005

Aspect OTP-Approximation Approach Predecryption Approach

Best-case latency Cache miss latency Predecryption buffer hit latency
Worst-case latency Cache miss + decryption latency Cache miss + decryption latency
On-chip storage overhead Sequence Number Cache Stream buffers + correlation table
Off-chip storage overhead Sequence number storage None
Other overheads Re-encrypt entire memory on seq. num. wraparound None
Communication with other procs Transfer sequence number on each instance + key once Transfer key once

Table 1: Qualitative comparison between our predecryption approach and OTP-approximation approach.

Benchmark Source Input Set L2 Cache Global L2 Cache Local Dynamic
Miss Rate Miss Rate Instructions

applu Spec2K train 2.96% 81.71% 15,559 M
bt NAS class A 0.09% 4.37% 560 M
bzip2 Spec2K train 0.15% 8.02% 6,696 M
cg NAS class S 1.88% 18.90% 289 M
equake Spec2K train 2.87% 78.90% 25,120 M
euler NASA euler.in 0.51% 2.4% 2,793 M
ft NAS class S 1.91% 15.86% 1,567 M
gap Spec2K train 2.72% 55.42% 6,733 M
irr PDE solver 10K nodes and 1M edges 1.52% 3.41% 963 M
is NAS class A 5.45% 35.55% 3,373 M
lu NAS class A 3.49% 55.19% 2,844 M
mcf Spec2K train 7.16% 26.39% 6,398 M
mgrid Spec2K 64 × 64 × 64 grid, 3 iters 1.41% 55.05% 28,603 M
moldyn Molecular dynamics code moldyn.in 0.16% 2.63% 4,954 M
mst Olden 1024 nodes 1.36% 37.34% 517 M
parser Spec2K train 0.39% 9.77% 7,811 M
sp NAS class A 2.63% 46.01% 2,825 M
swim Spec2K train 7.05% 49.98% 8,380 M

Table 2: The applications used in our evaluation.

due to prefetching in a system without memory encryp-
tion. The second pair of bars shows the relative reduc-
tion in execution time due to predecryption in a sys-
tem with memory encryption. If a prefetcher is only
able to hide memory latency alone, the relative execu-
tion time in Enc+CP+Sbuff would be higher than that
in NoEnc+CP+Sbuff. If a predecryptor is equally good
at hiding decryption latency as it is at hiding memory
latency, the relative execution time in Enc+CP+Sbuff
would be similar to that in NoEnc+CP+Sbuff. Finally,
if the prefetcher is better at hiding decryption latency
than it is at hiding memory latency alone, the relative ex-
ecution time Enc+CP+Sbuff would be lower than that in
NoEnc+CP+Sbuff.

Our results in Figure 3 indicate that in most applications
the prefetcher is at least as good at hiding decryption la-
tency as it is at hiding memory latency, and in some ap-
plications it is noticeably better. This indicates that the
prefetcher is indeed hiding some of the decryption la-
tency in addition to the memory latency. In fact, the frac-
tion of decryption latency that a prefetcher hides is often

larger than the fraction of the memory latency it hides.
Overall, without encryption, a prefetcher reduces execu-
tion time by 12% on average, while the reduction is 16%
in a system with memory encryption. This indicates that
predecryption is a promising scheme for alleviating the
performance impact of memory encrytion.

However, one disappointment in our current setup is the
lack of significant benefit from adding a correlation pre-
dictor to the stream buffers mechanism. To investigate
this, we evaluate the performance of predictors in differ-
ent configurations, and show the results in Figure 4.

Each bar has three segments. The bottom segment shows
the number of L2 cache misses that are correctly prede-
crypted with the given predecryption setup. The full or
partial miss latency (which includes memory latency and
decryption latency) of these accesses is hidden and the
data is read from the predecryption buffer. The middle
segment shows the percentage of L2 cache misses that go
to the main memory and also suffer the full decryption la-
tency. The top segment shows the number of blocks that
are predecrypted needlessly. All bars are shown relative

ACM SIGARCH Computer Architecture News 30 Vol. 33, No. 1, March 2005

0%

20%

40%

60%

80%

100%

120%

140%

160%

A
P
P
L
U

B
T

B
Z
IP
2

C
G

E
Q
U
A
K
E

E
U
L
E
R

F
T

G
A
P

IR
R IS L
U

M
C
F

M
G
R
ID

M
O
L
D
Y
N

M
S
T

P
A
R
S
E
R

S
P

S
W
IM

A
V
G

Benchmark

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

NoEnc Enc Enc+Sbuff Enc+CP Enc+CP+Sbuff

Figure 2: Application performance with different predecryption schemes

0%

20%

40%

60%

80%

100%

120%

A
P
P
L
U

B
T

B
Z
IP
2

C
G

E
Q
U
A
K
E

E
U
L
E
R

F
T

G
A
P

IR
R IS L
U

M
C
F

M
G
R
ID

M
O
L
D
Y
N

M
S
T

P
A
R
S
E
R

S
P

S
W
IM

A
V
G

Benchmark

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

NoEnc NoEnc+CP+Sbuff Enc Enc+CP+Sbuff

Figure 3: Predecryption benefit over standard prefetching

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

A
P

P
L
U

 (
E

n
c
+

S
b
u
ff

)

A
P

P
L
U

 (
E

n
c
+

C
P

)

A
P

P
L
U

 (
E

n
c
+

C
P

+
S

b
u
ff

)

B
T

 (
E

n
c
+

S
b
u
ff

)

B
T

 (
E

n
c
+

C
P

)

B
T

 (
E

n
c
+

C
P

+
S

b
u
ff

)

B
Z

IP
2
 (

E
n
c
+

S
b
u
ff

)

B
Z

IP
2
 (

E
n
c
+

C
P

)

B
Z

IP
2
 (

E
n
c
+

C
P

+
S

b
u
ff

)

C
G

 (
E

n
c
+

S
b
u
ff

)

C
G

 (
E

n
c
+

C
P

)

C
G

 (
E

n
c
+

C
P

+
S

b
u
ff

)

E
Q

U
A

K
E

 (
E

n
c
+

S
b
u
ff

)

E
Q

U
A

K
E

 (
E

n
c
+

C
P

)

E
Q

U
A

K
E

 (
E

n
c
+

C
P

+
S

b
u
ff

)

E
U

L
E

R
 (

E
n
c
+

S
b
u
ff

)

E
U

L
E

R
 (

E
n
c
+

C
P

)

E
U

L
E

R
 (

E
n
c
+

C
P

+
S

b
u
ff

)

F
T

 (
E

n
c
+

S
b
u
ff

)

F
T

 (
E

n
c
+

C
P

)

F
T

 (
E

n
c
+

C
P

+
S

b
u
ff

)

G
A

P
 (

E
n
c
+

S
b
u
ff

)

G
A

P
 (

E
n
c
+

C
P

)

G
A

P
 (

E
n
c
+

C
P

+
S

b
u
ff

)

IR
R

 (
E

n
c
+

S
b
u
ff

)

IR
R

 (
E

n
c
+

C
P

)

IR
R

 (
E

n
c
+

C
P

+
S

b
u
ff

)

IS
 (

E
n
c
+

S
b
u
ff

)

IS
 (

E
n
c
+

C
P

)

IS
 (

E
n
c
+

C
P

+
S

b
u
ff

)

L
U

 (
E

n
c
+

S
b
u
ff

)

L
U

 (
E

n
c
+

C
P

)

L
U

 (
E

n
c
+

C
P

+
S

b
u
ff

)

M
C

F
 (

E
n
c
+

S
b
u
ff

)

M
C

F
 (

E
n
c
+

C
P

)

M
C

F
 (

E
n
c
+

C
P

+
S

b
u
ff

)

M
G

R
ID

 (
E

n
c
+

S
b
u
ff

)

M
G

R
ID

 (
E

n
c
+

C
P

)

M
G

R
ID

 (
E

n
c
+

C
P

+
S

b
u
ff

)

M
O

L
D

Y
N

 (
E

n
c
+

S
b
u
ff

)

M
O

L
D

Y
N

 (
E

n
c
+

C
P

)

M
O

L
D

Y
N

 (
E

n
c
+

C
P

+
S

b
u
ff

)

M
S

T
 (

E
n
c
+

S
b
u
ff

)

M
S

T
 (

E
n
c
+

C
P

)

M
S

T
 (

E
n
c
+

C
P

+
S

b
u
ff

)

P
A

R
S

E
R

 (
E

n
c
+

S
b
u
ff

)

P
A

R
S

E
R

 (
E

n
c
+

C
P

)

P
A

R
S

E
R

 (
E

n
c
+

C
P

+
S

b
u
ff

)

S
P

 (
E

n
c
+

S
b
u
ff

)

S
P

 (
E

n
c
+

C
P

)

S
P

 (
E

n
c
+

C
P

+
S

b
u
ff

)

S
W

IM
 (

E
n
c
+

S
b
u
ff

)

S
W

IM
 (

E
n
c
+

C
P

)

S
W

IM
 (

E
n
c
+

C
P

+
S

b
u
ff

)

A
V

G
 (

E
n
c
+

S
b
u
ff

)

A
V

G
 (

E
n
c
+

C
P

)

A
V

G
 (

E
n
c
+

C
P

+
S

b
u
ff

)

Benchmark

P
r
e
d

ic
ti

o
n

 P
e
r
fo

r
m

a
n

c
e

Correct Prediction Misses Wrong Prediction

`f

Figure 4: Prediction performance for different predecryption schemes

ACM SIGARCH Computer Architecture News 31 Vol. 33, No. 1, March 2005

PARAMETERS

4 GHz, 6-way out-of-order issue
Processor Int, fp, ld/st FUs: 4, 3, 4

Branch penalty: 17 cycles
ROB size: 248
L1-Inst: 16 KB, 2 way, 32-B line, WB, RT: 2 cycles, LRU, Outstanding ld+st misses: 16+16.

Memory L1-Data: 16 KB, 2 way, 64-B line, WB, RT: 3 cycles, LRU, Outstanding ld+st misses: 24+24.
L2-Unif. (shared/per proc): 1 MB, 8-way, 64-B line, RT: 16 cycles, LRU, Outstanding ld+st: 24+24.
Predecryption Buffer: 4-way, LRU, 64-B line, 16KB for Sbuff and 32KB for CP (48KB in Sbuff+CP)
Memory bus: 1 GHz, 4-Byte wide, split-transaction
RT memory latency: 275 cycles

Stream Buffers Maximum 16 streams, 8 entries/buffer
Correlation Table Replicated organization [18], 64K entries, 2-way, 2 levels, 2 successors/level, 8-cycle access, 647KB

total
Encr/Decryption 128 cycles for each cache line

CONFIGURATIONS

NoEnc No encryption/decryption delay and no predecryption
Enc Encryption/decryption delay and no predecryption
Sbuff No encryption/decryption delay and prefetching with stream buffers
Enc+Sbuff Encryption/decryption delay and predecryption with stream buffers
CP No encryption/decryption delay and prefetching with correlation table
Enc+CP Encryption/decryption delay and predecryption with correlation table
CP+Sbuff No encryption/decryption delay and prefetching with both stream buffers and correlation table
Enc+CP+Sbuff Encryption/decryption delay and predecryption with both stream buffers and correlation table (SPEC2K

benchmarks use delta scheme for the correlation table with this configuration)

Table 3: Parameters and configurations of the simulated architecture. Latencies correspond to contention-
free conditions. RT stands for round-trip from the processor. We assume an AES encryption/decryption
algorithm is used and can be performed in 128 cycles. This is roughly in line with 14-cycle latency on a
154 MHz processor reported in [16].

to the number of L2 misses in the baseline configuration.
On average, the correlation predictor alone successfully
predecrypts about 43% of the original L2 cache misses.
However, this scheme also causes an extra 37% more pre-
decryptions of data that is not useful to the application.
These extra predecryptions could be the reason for the
lack of performance benefit when the correlation prede-
cryptor is added to the stream buffers. These extra mem-
ory accesses cause contention delays and interfere with
memory requests for valid data. This is clearly evident
in the is benchmark, where the addition of correlation
prefetching slows down the execution of the benchmark,
due to a high number of wrong predictions and low num-
ber of correct ones.

Future work will involve implementing a confidence
scheme to only send predecryption requests for which
there is some confidence that the data will be used. An-
other reason for low benefit of correlation prefetching is
that the table may be too small for the data set size in
some applications. We use a tagged correlation table and
the lack of attempted predecryptions in some applications
(e.g. irr) indicates that many misses fail to match an en-
try in the correlation table. However, a larger table may
not be feasible to put on-chip, and our future work will

focus on improving the table’s hit rate while maintaining
or further reducing its size. Our results show that stream
buffers are very accurate in terms of predecrypting only
useful data, and they also act as a filter that helps utilize
the correlation table better. The combination of the two
prediction mechanisms can predecrypt a very high per-
centage of L2 cache misses (80%), while only generating
20% additional unnecessary predecryptions.

Another interesting observation that can be made from
Figures 2 and 4 is that in four benchmarks (applu, bt,
ft, and mcf), we correctly predecrypt a large portion of
L2 cache misses, but the execution compared with Enc
is still similar. This is because many of the correct pre-
decryptions in these applications only hide partial miss
latency, and a significant fraction of the latency remains.
This, combined with the increase in bus traffic due to
mispredictions (top segment of each bar in Figure 4), re-
sults in a low overall benefit from predecryption. This
confirms that reducing these extra predecryptions should
make our scheme even more attractive.

5. Conclusions

Our results show that predecryption compares favorably
to schemes such as one-time-pad because the execution

ACM SIGARCH Computer Architecture News 32 Vol. 33, No. 1, March 2005

time of some benchmarks can actually be reduced even
with the extra latency. In schemes such as one-time-pad
there will always be some slowdown in execution time
because the decryption delay of a memory request can
never be fully hidden as it can in our scheme. Since the
data shows that the correlation predecryptor does not pro-
vide much performance improvement over simply stream
buffers, we feel that this scheme will appear even more
attractive once the correlation predecryptor implementa-
tion is optimized.

References
[1] T. Alexander and G. Kedem. Distributed Predictive

Cache Design for High Performance Memory Sys-
tems. In the 2nd Intl. Symp. on High-Performance
Computer Architecture, pages 254–263, 1996.

[2] M. J. Charney and A. P. Reeves. Generalized Cor-
relation Based Hardware Prefetching. Tech. Rep.
EE-CEG-95-1, Cornell University, 1995.

[3] T. F. Chen and J. L.Baer. Reducing Memory La-
tency via Non-Blocking and Prefetching Cache. In
the 5th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems,
pages 51–61, 1992.

[4] K. Farkas, P. Chow, N. Jouppi,
and Z. Vranesic. Memory-system design consid-
erations for dynamically-scheduled processors. In
Proc. of the 24th Intl. Symp. on Computer Architec-
ture, 1997.

[5] G. Hinton and D. Sager and M. Upton and D. Boggs
and D. Carmean and A. Kyker and P. Roussel. The
Microarchitecture of the Pentium 4 Processor. Intel
Technology Journal, (First Quarter), 2001.

[6] T. Gilmont, J.-D. Legat, and J.-J. Quisquater. En-
hancing the Security in the Memory Management
Unit. In Proc. of the 25th EuroMicro Conf., 1999.

[7] A. Huang. Hacking the Xbox: An Introduction to
Reverse Engineering. No Starch Press, San Fran-
cisco, CA, 2003.

[8] IBM. IBM Power4 System Architecture White
Paper, 2002. http://www-1.ibm.com/servers/ es-
erver/pseries/hardware/whitepapers/power4.html.

[9] International Planning and Research Corporation.
6th BSA Global Software Piracy Study, 2001.
http://www. bsa.org/resources/2001-05-21.55.pdf.

[10] D. Joseph and D. Grunwald. Prefetching Using
Markov Predictors. In the 24th Intl. Symp. on Com-
puter Architecture, pages 252–263, 1997.

[11] N. Jouppi. Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers. In the 17th
Intl. Symp. on Computer Architecture, pages 364–
373, 1990.

[12] A. Lai, C. Fide, and B. Falsafi. Dead-Block Predic-
tion and Dead-Block Correlating Prefetchers. In the
28th Intl. Symp. on Computer Architecture, pages
144–154, 2001.

[13] D. Lie, J. Mitchell, C. Thekkath, and M. Horowitz.
Specifying and Verifying Hardware for Tamper-
Resistant Software. In IEEE Symp. on Security and
Privacy, 2003.

[14] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln,
D. Boneh, J. Mitchell, and M. Horowitz. Architec-
tural Support for Copy and Tamper Resistant Soft-
ware. In Proc. of the 9th Intl. Conf. on Architectural
Support for Programming Languages and Operat-
ing Systems, 2000.

[15] S. Palacharla and R. Kessler. Evaluating Stream
Buffers as a Secondary Cache Replacement. In the
21st Intl. Symp. on Computer Architecture, pages
24–33, 1994.

[16] P. Schaumount, H.Kuo, and I. Verbauwhede. Un-
locking the design secrets of a 2.29 gb/s rijndel pro-
cessor. In Design Automation Conf., 2002.

[17] T. Sherwood, S. Sair, and B. Calder. Predictor-
Directed Stream Buffers. In the 33rd Intl. Symp.
on Microarchitecture, pages 42–53, 2000.

[18] Y. Solihin, J. Lee, and J. Torrellas. Using a user-
level memory thread for correlation prefetching. In
29th Intl. Symp. on Computer Architecture (ISCA),
2002.

[19] Standard Performance Evaluation Corporation.
Spec benchmarks. http://www.spec.org, 2000.

[20] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. Efficient Memory Integrity Verification
and Encryption for Secure Processor. In Proc. of the
36th Intl. Symp. on Microarchitecture, 2003.

[21] J. Yang, Y. Zhang, and L. Gao. Fast Secure Proces-
sor for Inhibiting Software Piracy and Tampering.
In Proc. of the 36th Intl. Symp. on Microarchitec-
ture, 2003.

ACM SIGARCH Computer Architecture News 33 Vol. 33, No. 1, March 2005

